A7N01鋁合金激光—變極性TIG復合填絲焊接工藝及組織性能研究
本文選題:激光技術(shù) + 變極性TIG; 參考:《北京工業(yè)大學》2016年碩士論文
【摘要】:采用鋁合金代替?zhèn)鹘y(tǒng)鋼鐵材料是實現(xiàn)軌道列車輕量化的有效途徑。A7N01鋁合金是一種專門為高速列車研發(fā)的新型鋁合金,大量應用于高速列車鋁合金車體生產(chǎn)制造。當前,A7N01鋁合金車體的焊接主要采用傳統(tǒng)的電弧焊,但焊后容易產(chǎn)生焊接變形及接頭軟化的問題。激光焊接具有能量密度高、焊接速度快、焊后熱影響區(qū)窄等優(yōu)點,能有效克服焊接變形及接頭軟化的問題。但激光焊接A7N01鋁合金存在焊縫表面成形差及氣孔等問題。光纖激光-變極性TIG復合焊接綜合利用了激光和電弧兩種熱源的優(yōu)勢,同時變極性TIG電弧既能滿足陰極清理,又能最大限度降低鎢極燒損,可有效改善鋁合金焊接表面成形差及氣孔等缺陷,具有明顯的技術(shù)優(yōu)勢。針對高速列車用4mm厚A7N01-T4鋁合金,采用光纖激光-變極性TIG復合填絲焊接方法,主要研究了復合焊接工藝參數(shù)對焊縫成形及焊縫氣孔的影響規(guī)律,探討了焊縫氣孔的種類、形成機理及得到抑制的方法。通過工藝參數(shù)優(yōu)化,獲得了成形良好內(nèi)部無缺陷的焊接接頭,同時分析了優(yōu)化工藝參數(shù)條件下焊接接頭的顯微組織和力學性能。工藝試驗研究結(jié)果表明,采用激光在前電弧在后的焊接方向焊縫成形較好,且熱源間距為2mm時焊接過程穩(wěn)定,焊縫成形較好;隨著焊接電流的增加,焊縫正面熔寬增加,背面熔寬基本不變;而焊接速度降低,焊縫正面和背面熔寬均增加;同時發(fā)現(xiàn)氣孔是焊縫中存在的主要缺陷,其氣孔類型主要是氫氣孔和工藝氣孔,氫氣孔可以通過去除母材表面一定厚度包鋁層得到抑制,而工藝氣孔與焊接工藝參數(shù)密切相關。隨著焊接速度降低,焊縫中工藝氣孔減少;而送絲速度增加,焊縫工藝氣孔增加;光絲間距為1mm時焊縫氣孔減少。在激光功率為6kW,焊接電流為180A,焊接速度為4m/min,送絲速度為4m/min時,獲得了成形良好內(nèi)部無缺陷的焊接接頭。接頭組織分析表明,焊縫主要由熔合線附近細小等軸晶、柱狀晶和焊縫中心的樹枝晶構(gòu)成,從上至下熔合線附近等軸細晶區(qū)逐漸減少,且焊縫中心線附近樹枝晶晶粒尺寸逐漸減小,二次枝晶逐漸弱化;接頭硬度測試顯示焊縫區(qū)存在一定程度的接頭軟化。拉伸試驗表明,焊態(tài)下接頭抗拉強度為325.25MPa,達到母材的73.5%,延伸率為3.1%。而自然時效一個月后接頭力學性能顯著增強,接頭抗拉強度為363.78MPa,達到母材的82.2%,延伸率為4.65%。拉伸試驗接頭均斷裂于焊縫位置,焊縫區(qū)為接頭薄弱位置,焊縫斷口存在大量等軸韌窩,表現(xiàn)出明顯的韌性斷裂特性。
[Abstract]:Aluminum alloy replacing traditional steel material is an effective way to realize the lightweight of rail train. A7N01 aluminum alloy is a new type of aluminum alloy specially developed for high-speed train, which is widely used in the manufacture of aluminum alloy body of high-speed train. At present, traditional arc welding is mainly used in welding of A7N01 aluminum alloy body, but welding deformation and joint softening are easy to occur after welding. Laser welding has the advantages of high energy density, fast welding speed and narrow heat affected zone after welding, which can effectively overcome the problems of welding deformation and joint softening. However, laser welding of A7N01 aluminum alloy has some problems such as poor weld surface forming and porosity. Fiber laser-variable-polarity TIG composite welding makes full use of the advantages of laser and arc heat sources. At the same time, variable polarity TIG arc can not only satisfy cathode cleaning, but also minimize tungsten burn loss. It can effectively improve the defects of aluminum alloy welding surface, such as poor forming and porosity, and has obvious technical advantages. Aiming at the thick A7N01-T4 aluminum alloy of 4mm used in high-speed train, the influence of welding process parameters on weld formation and weld porosity was studied by fiber laser and variable polarity TIG composite filling wire welding method, and the types of weld porosity were discussed. Formation mechanism and method of inhibition. By optimizing the process parameters, the welded joints with good internal defects were obtained, and the microstructure and mechanical properties of the welded joints were analyzed under the optimized process parameters. The experimental results show that the welding process is stable and the weld forming is better when the laser is used in the welding direction of the front arc and the distance of the heat source is 2mm, and the weld width increases with the increase of welding current. The width of the back weld is almost unchanged, while the welding speed decreases, the width of the front and the back of the weld increases. At the same time, it is found that the porosity is the main defect in the weld, and the main types of porosity are the hydrogen pores and the technological pores. The hydrogen pore can be restrained by removing a certain thickness of aluminum coating on the surface of the base metal, and the process porosity is closely related to the welding process parameters. With the decrease of welding speed, the process porosity decreases, while the wire feeding speed increases, and the weld porosity decreases when the distance between light wire and wire is 1mm. When the laser power is 6kW, the welding current is 180A, the welding speed is 4m / min, and the wire feeding speed is 4m/min, the welded joints with good internal defects are obtained. The microstructure analysis shows that the weld is mainly composed of fine equiaxed crystals near the fusion line, columnar crystals and dendrite in the center of the weld, and the equiaxed fine grain area decreases gradually from the top to the bottom near the fusion line. Moreover, the size of dendritic grain and secondary dendrite were gradually decreased, and the hardness test showed that there was a certain degree of joint softening in the weld zone. The tensile test shows that the tensile strength of the welded joint is 325.25 MPA, which reaches 73.5% of the base metal, and the elongation is 3.1%. The mechanical properties of the joints increased significantly after one month of natural aging, and the tensile strength of the joints was 363.78 MPa, which reached 82.2 of the base metal and the elongation of the joints was 4.65. The tensile test joints are all broken in the weld position, the weld zone is the weak position of the joint, and there are a large number of equiaxed dimples on the fracture surface of the weld, which shows obvious ductile fracture characteristics.
【學位授予單位】:北京工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TG457.14
【相似文獻】
相關期刊論文 前10條
1 廖平;殷樹言;黃鵬飛;盧振洋;蔣觀軍;;變極性脈沖MIG焊穩(wěn)弧系統(tǒng)研究[J];電焊機;2006年02期
2 廖平;黃鵬飛;盧振洋;殷樹言;蔣觀軍;;變極性脈沖MIG焊控制系統(tǒng)[J];焊接學報;2006年03期
3 李中友,劉秀忠,陳茂愛,張光先;變極性方波電源的換向與控制[J];焊接學報;2002年02期
4 朱志明;周雪珍;符策健;紀圣儒;;脈沖變極性弧焊逆變電源數(shù)字化控制系統(tǒng)[J];焊接學報;2007年07期
5 傅強;薛松柏;姚河清;;變極性熔化極氣體保護焊的研究與發(fā)展[J];電焊機;2010年10期
6 杭爭翔;汪江;李利;徐英;;變極性脈沖MIG焊的控制[J];電焊機;2006年02期
7 杭爭翔;范寧;;變極性脈沖熔化極氬弧焊雙向高壓疊加控制[J];電力電子技術(shù);2010年01期
8 張廣軍,耿正,李莉群,殷樹言;250A變極性電源的研制[J];電焊機;1997年02期
9 呂耀輝,陳樹君,殷樹言,黃鵬飛,韓永全;維弧對鋁合金變極性穿孔型等離子弧行為的影響[J];機械工程學報;2003年11期
10 齊鉑金;從保強;;新型超快變換復合脈沖變極性弧焊電源拓撲[J];焊接學報;2008年11期
相關會議論文 前8條
1 陳樹君;呂耀輝;黃鵬飛;劉嘉;殷樹言;;脈沖調(diào)制變極性TIG焊接LD10鋁合金[A];第十一次全國焊接會議論文集(第2冊)[C];2005年
2 李勤;石金水;禹海軍;馬冰;何國容;荊小兵;王永偉;何輝;周符新;;交變極性聚焦磁場抑制束質(zhì)心的Corkscrew運動[A];中國工程物理研究院科技年報(2001)[C];2001年
3 李春旭;李德武;張學紅;石紅信;;變極性TIG焊逆變電源的仿真建模與波形實現(xiàn)[A];第十一次全國焊接會議論文集(第2冊)[C];2005年
4 李延杰;;鋁合金變極性等離子焊接的生產(chǎn)應用[A];云南省機械工程學會第七屆學術(shù)年會暨十三省區(qū)市機械工程學會學術(shù)年會論文集[C];2008年
5 李延杰;;鋁合金變極性等離子焊接的生產(chǎn)應用[A];第四屆十三省區(qū)市機械工程學會科技論壇暨2008海南機械科技論壇論文集[C];2008年
6 李春旭;周耀軍;邱聯(lián)奎;;80C552單片機在變極性TIG焊電源控制中的應用[A];第十次全國焊接會議論文集(第2冊)[C];2001年
7 石紅信;丁高劍;代樂宜;朱錦洪;宋書中;;變極性TIG焊電源二次逆變控制電路的設計[A];第十五次全國焊接學術(shù)會議論文集[C];2010年
8 姜yN;徐濱士;呂耀輝;劉存龍;向永華;夏丹;;焊接工藝參數(shù)對變極性等離子焊接電弧力的影響[A];第八屆全國表面工程學術(shù)會議暨第三屆青年表面工程學術(shù)論壇論文集(二)[C];2010年
相關博士學位論文 前1條
1 李飛;5083鋁合金光纖激光—變極性TIG復合焊接工藝及機理研究[D];北京工業(yè)大學;2014年
相關碩士學位論文 前10條
1 王啟明;A7N01鋁合金激光—變極性TIG復合填絲焊接工藝及組織性能研究[D];北京工業(yè)大學;2016年
2 伍昀;高頻變極性弧焊電源的研究[D];哈爾濱工業(yè)大學;2006年
3 楊勇;變極性TIG焊機的研制[D];沈陽工業(yè)大學;2008年
4 王超;數(shù)字化變極性TIG電源的研究[D];山東大學;2010年
5 余錫科;鎂合金變極性等離子焊接熱循環(huán)模擬及組織性能研究[D];重慶理工大學;2010年
6 周耀軍;變極性TIG焊電源的研制[D];甘肅工業(yè)大學;2001年
7 王莉;變極性TIG焊接電弧行為研究[D];天津大學;2006年
8 邢進;數(shù)字控制變極性TIG焊機的研制[D];沈陽工業(yè)大學;2008年
9 蔣觀軍;變極性PMIG焊接設備輔助控制系統(tǒng)研制[D];北京工業(yè)大學;2006年
10 陳玉喜;逆變式變極性TIG焊電源的研究[D];河南科技大學;2009年
,本文編號:1794983
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1794983.html