基于模糊神經(jīng)的多路模溫控制方法研究
本文選題:壓鑄模具 切入點:溫度控制 出處:《沈陽理工大學》2017年碩士論文
【摘要】:近些年來,隨著壓鑄行業(yè)的不斷發(fā)展,即使在經(jīng)濟不是很景氣的情況下,因為壓鑄模具的產(chǎn)品質量、生產(chǎn)工藝、產(chǎn)品的精密程度等有所提高,使得壓鑄市場仍保持比較健康的狀態(tài)。根據(jù)市場調查顯示,壓鑄模具的產(chǎn)值每年在穩(wěn)步上升。汽車、航天等行業(yè)的迅猛發(fā)展使得對模具需求量大大提高,對我國壓鑄行業(yè)來說,機遇與挑戰(zhàn)并存。然而我國壓鑄模具的制造水平與發(fā)達國家還是有一定差距,當務之急是要自主研發(fā)并改進模具的各項指標,而不是一味的去仿造國外產(chǎn)品。壓鑄模具產(chǎn)品的好壞,很主要的一個指標就是壓鑄過程中模具的溫度,這對產(chǎn)品的質量及模具的壽命有著至關重要的影響。壓鑄模具溫度的主要特點是冷卻過程較慢,耗能大,如果得不到有效控制,嚴重時會直接影響產(chǎn)品的質量,這就要求在壓鑄過程中,溫度要保持在一定的范圍內。模具溫度具有大延時、大慣性、非線性的特點,并且沒有精確的數(shù)學模型,傳統(tǒng)的控制方法不能達到精確控制的效果。基于這個問題,本論文設計了基于模糊神經(jīng)網(wǎng)絡的多路模具溫度控制系統(tǒng)。因為壓鑄模具是由個多個模具塊組合而成的,所以對每塊模具設計了獨立的循環(huán)冷卻水回路,通過調節(jié)各回路冷卻水閥門開通時間長短,來使模具降溫,最終達到控溫目的。模糊神經(jīng)網(wǎng)絡是近些年來控制領域研究的一個熱點,模糊控制和神經(jīng)網(wǎng)絡都是基于無模型、非線性系統(tǒng),其中模糊系統(tǒng)善于表達模糊、定性知識,缺乏自適應能力和自學習,而神經(jīng)網(wǎng)絡有很好的學習能力,但不能利用基于規(guī)則的知識,結合兩者優(yōu)點設計一種基于模糊神經(jīng)網(wǎng)絡控系統(tǒng),通過MATLAB仿真,與模糊控制相比較,系統(tǒng)響應更快,精度更高,效果更好。
[Abstract]:In recent years, with the continuous development of the die casting industry, even when the economy is not very prosperous, the quality of the die casting die, the production process, the precision of the products have been improved.So that the die-casting market to maintain a relatively healthy state.According to market research, the output value of die-casting dies is rising steadily every year.With the rapid development of automobile, aerospace and other industries, the demand for dies is greatly increased, and opportunities and challenges coexist for the die casting industry in China.However, the manufacturing level of die casting dies in our country is still far from that in developed countries. The urgent task is to develop and improve the die indexes independently, instead of blindly copying foreign products.The temperature of die casting process is one of the most important indexes of die casting products, which has a vital effect on the quality of products and the life of dies.The main characteristic of die casting mold temperature is that the cooling process is slow and the energy consumption is large. If it is not effectively controlled, it will directly affect the quality of the product when it is not effectively controlled, which requires that the temperature should be kept within a certain range during the die casting process.The mold temperature has the characteristics of long delay, large inertia and nonlinear, and there is no accurate mathematical model. The traditional control method can not achieve the effect of accurate control.Based on this problem, a multi-channel mold temperature control system based on fuzzy neural network is designed in this paper.Because the die casting mould is composed of several die blocks, an independent circulating cooling water circuit is designed for each die. By adjusting the opening time of each circuit cooling water valve, the mold is cooled down and the temperature control is finally achieved.Fuzzy neural network (FNN) is a hot topic in the field of control in recent years. Both fuzzy control and neural network are based on modelless, nonlinear systems, in which fuzzy systems are good at expressing fuzzy, qualitative knowledge, lack of adaptive ability and self-learning.The neural network has good learning ability, but it can't use the rule-based knowledge to design a fuzzy neural network control system based on the advantages of both. Through MATLAB simulation, compared with the fuzzy control, the system response is faster and the accuracy is higher.It works better.
【學位授予單位】:沈陽理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TG241;TP273
【參考文獻】
相關期刊論文 前10條
1 趙銀平;張剛林;溫陽東;甘敏;;基于VP算法的前饋神經(jīng)網(wǎng)絡參數(shù)優(yōu)化[J];控制工程;2016年02期
2 張文;王莉;;基于T-S模糊神經(jīng)網(wǎng)絡的潁河水質時空變化特征分析[J];環(huán)境科學與技術;2015年12期
3 張根甫;郝曉劍;桑濤;李巖峰;;熱電偶溫度傳感器動態(tài)響應特性研究[J];中國測試;2015年10期
4 張培彥;余澤通;;基于PLC的低壓鑄造機自動控制系統(tǒng)設計[J];鑄造技術;2015年07期
5 董早鵬;劉濤;萬磊;李岳明;廖煜雷;梁興威;;基于Takagi-Sugeno模糊神經(jīng)網(wǎng)絡的欠驅動無人艇直線航跡跟蹤控制[J];儀器儀表學報;2015年04期
6 劉曉雯;;壓鑄件模具型腔散熱過程分析[J];鑄造技術;2015年02期
7 李煒;李青朋;毛海杰;龔建興;;基于T-S模糊神經(jīng)網(wǎng)絡模型的編碼器故障軟閉環(huán)容錯控制方法[J];計算機應用;2014年12期
8 程俊明;陸啟為;李立善;李赫;;鋁合金低壓鑄造試棒模具的研究[J];中國鑄造裝備與技術;2014年03期
9 朱堅民;沈正強;李孝茹;齊北川;;基于神經(jīng)網(wǎng)絡反饋補償控制的磁懸浮球位置控制[J];儀器儀表學報;2014年05期
10 姚健;紀志成;黃言平;;基于神經(jīng)網(wǎng)絡的非線性多模型自適應控制[J];控制工程;2014年02期
相關碩士學位論文 前8條
1 孫強;溫度傳感器自動檢定系統(tǒng)設計[D];大連理工大學;2014年
2 虞康;大型復雜動力總成部件的壓鑄模具溫度場與應力場研究[D];華中科技大學;2012年
3 董軍剛;大型復雜壓鑄模模溫控制關鍵技術的研究與開發(fā)[D];華中科技大學;2010年
4 何偉;高真空壓鑄用真空控制技術的開發(fā)[D];華中科技大學;2009年
5 潘歡;鋁合金壓鑄用高真空技術的開發(fā)與應用[D];華中科技大學;2008年
6 桑寶光;自然冷卻條件下壓鑄模具局部冷卻能力的數(shù)值分析[D];重慶大學;2006年
7 廖慧敏;鎂合金壓鑄件缺陷分析[D];重慶大學;2006年
8 黃偉;壓鑄機測控系統(tǒng)的設計與實現(xiàn)[D];華東師范大學;2006年
,本文編號:1729813
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1729813.html