數(shù)值耦合技術(shù)的研究及其在高速金屬切削問題上的應(yīng)用
本文選題:高速金屬切削 切入點(diǎn):有限元 出處:《北京理工大學(xué)》2016年博士論文
【摘要】:高速切削加工技術(shù)有著高生產(chǎn)效率和高加工精度的特點(diǎn),所以自其理念提出就受到廣泛關(guān)注,成為新的熱點(diǎn)課題。與傳統(tǒng)切削工藝相比,數(shù)值方法不僅可以克服試驗(yàn)方法的不足,實(shí)現(xiàn)高速切削過程的定量分析,而且投資少,周期短,受到了不少研究工作者的青睞。本文對(duì)有限元、物質(zhì)點(diǎn)以及邊界元等數(shù)值方法進(jìn)行了研究,結(jié)合各自的優(yōu)缺點(diǎn),建立數(shù)值方法耦合技術(shù),開發(fā)相應(yīng)地程序,并運(yùn)用和發(fā)展已有的金屬切削以及力學(xué)理論成果,通過考慮多種非線性因素,在高速條件下模擬和分析金屬的切削過程,為進(jìn)一步的理論研究和工程應(yīng)用提供可參考的結(jié)論。首先,在已有的對(duì)稱迭代有限元-邊界元耦合算法基礎(chǔ)上,編制相應(yīng)的計(jì)算程序,對(duì)平面含雙周期夾雜復(fù)合材料的等效彈性性能進(jìn)行了研究。由于有限元方法適合于分析非均質(zhì)材料問題,而邊界元方法更適合于彈性均質(zhì)材料問題,因此將所分析的含雙周期非均質(zhì)夾雜的復(fù)合材料分解為由有限元方法求解的夾雜子域和由邊界元方法求解的基體子域,并分別建立兩子域的平衡方程。在滿足兩子域界面上位移和面力協(xié)調(diào)連續(xù)的條件下,通過迭代得到問題的解。數(shù)值算例分別對(duì)含不規(guī)則各向異性?shī)A雜以及規(guī)則功能梯度夾雜的復(fù)合材料進(jìn)行了研究,計(jì)算結(jié)果與已有的數(shù)值解進(jìn)行了對(duì)比,驗(yàn)證了對(duì)稱迭代耦合算法的正確性和有效性。其次,提出了對(duì)稱迭代有限元-邊界元?jiǎng)恿W(xué)耦合算法,并通過ABAQUS中用戶子程序UEL接口,在商業(yè)軟件ABAQUS平臺(tái)上實(shí)現(xiàn)了耦合算法的運(yùn)行,成功地將邊界元法與ABAQUS軟件結(jié)合在一起,使得用戶不僅可以受益于ABAQUS強(qiáng)大的前處理和后處理功能,又可以更好地處理有限元不擅長(zhǎng)而邊界元可以解決的問題,例如無限域系統(tǒng)問題或者高應(yīng)力集中問題。通過這種二次開發(fā)技術(shù),用戶一方面可以受益于軟件通用的平臺(tái),另一方面可以結(jié)合特定的專業(yè)問題來建立符合自己?jiǎn)栴}的模型。而且單個(gè)或多個(gè)子程序與整個(gè)程序相比更易于維護(hù)。數(shù)值算例對(duì)彈塑性動(dòng)力學(xué)問題以及無限域問題進(jìn)行了研究,證明耦合算法嵌入到ABAQUS軟件的可行性。最后,實(shí)現(xiàn)了物質(zhì)點(diǎn)方法與邊界元方法的耦合,并將其應(yīng)用于高速金屬切削問題中。切削過程中,劇烈的彈塑性變形只發(fā)生在切屑產(chǎn)生過程中以及加工表面以下局部區(qū)域,離加工表面較遠(yuǎn)的下方區(qū)域僅僅發(fā)生彈性變形。基于模型的這個(gè)特點(diǎn),開發(fā)了物質(zhì)點(diǎn)和邊界元耦合算法并將其應(yīng)用到正交金屬切削模型中,使得物質(zhì)點(diǎn)模擬發(fā)生嚴(yán)重變形的區(qū)域,而邊界元法模擬遠(yuǎn)離加工表面的彈性區(qū)域。數(shù)值算例運(yùn)用耦合算法對(duì)鈦合金(Ti6A14V)進(jìn)行了不同速度下的切削模擬,模擬結(jié)果與實(shí)驗(yàn)結(jié)果進(jìn)行了對(duì)比,并對(duì)不同速度下的切屑形態(tài)、切削力以及切削溫度進(jìn)行了分析。
[Abstract]:High speed cutting technology has the characteristics of high production efficiency and high machining precision, so it has been paid more and more attention since its concept was put forward, and has become a new hot topic.Compared with the traditional cutting technology, the numerical method can not only overcome the shortcomings of the test method, but also realize the quantitative analysis of the high-speed cutting process, and the investment is less and the period is short, so it is favored by many researchers.In this paper, the numerical methods such as finite element method, material point and boundary element are studied. Combining their advantages and disadvantages, the coupling technique of numerical method is established, the corresponding program is developed, and the existing results of metal cutting and mechanics theory are applied and developed.By considering a variety of nonlinear factors, the cutting process of metal is simulated and analyzed at high speed, which provides a reference conclusion for further theoretical research and engineering application.Firstly, based on the existing symmetric iterative finite element and boundary element coupling algorithms, the equivalent elastic properties of planar composites with double periodic inclusions are studied by a corresponding calculation program.Because the finite element method is suitable for the analysis of heterogeneous material problems, the boundary element method is more suitable for the elastic homogeneous material problem.Therefore, the composite materials with biperiodic inhomogeneous inclusions are decomposed into two subdomains: the inclusion subdomains solved by the finite element method and the matrix subdomains solved by the boundary element method, and the equilibrium equations of the two subdomains are established respectively.The solution of the problem is obtained by iterative method under the condition that displacement and surface force are coordinated and continuous at the interface of two subdomains.Numerical examples of composite materials with irregular anisotropic inclusions and regular functional gradient inclusions are studied. The results are compared with the existing numerical solutions to verify the correctness and effectiveness of the symmetric iterative coupling algorithm.Secondly, a symmetric iterative finite-boundary element dynamic coupling algorithm is proposed, and the coupling algorithm is implemented on the commercial software ABAQUS platform through the user subprogram UEL interface in ABAQUS. The boundary element method is successfully combined with the ABAQUS software.Not only can users benefit from ABAQUS's powerful preprocessing and post-processing functions, but also they can better deal with problems that the finite element is not good at and boundary elements can solve, such as infinite domain system problems or high stress concentration problems.Through this secondary development technology, users can benefit from the common platform of software on the one hand, and build the model according to their own problems on the other hand, combining with specific professional problems.And a single or more subroutines are easier to maintain than the whole program.Numerical examples are used to study the elastoplastic dynamics problem and infinite domain problem, and the feasibility of embedding the coupled algorithm into ABAQUS software is proved.Finally, the coupling of material point method and boundary element method is realized and applied to high speed metal cutting.In the cutting process, the severe elastic-plastic deformation occurs only in the process of chip generation and the local area below the machined surface, and only elastic deformation occurs in the lower region far from the machined surface.Based on this characteristic of the model, the coupling algorithm of material point and boundary element is developed and applied to the orthogonal metal cutting model, which makes the material point simulate the region with serious deformation, and the boundary element method is used to simulate the elastic region far from the machined surface.A numerical example is used to simulate the cutting of titanium alloy Ti6A14V at different speeds. The simulation results are compared with the experimental results. The chip shape, cutting force and cutting temperature at different speeds are analyzed.
【學(xué)位授予單位】:北京理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TG506.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 李智;李俊濤;張永軍;;基于ALE方法的金屬切削過程有限元研究[J];現(xiàn)代制造技術(shù)與裝備;2013年01期
2 沙智華;王巖;張生芳;;切削加工有限元仿真技術(shù)研究進(jìn)展[J];機(jī)械制造;2010年06期
3 唐志濤;劉戰(zhàn)強(qiáng);艾興;付秀麗;;金屬切削加工熱彈塑性大變形有限元理論及關(guān)鍵技術(shù)研究[J];中國(guó)機(jī)械工程;2007年06期
4 楊勇;柯映林;董輝躍;;高速切削有限元模擬技術(shù)研究[J];航空學(xué)報(bào);2006年03期
5 王曉燕;盧芳云;林玉亮;;SHPB實(shí)驗(yàn)中端面摩擦效應(yīng)研究[J];爆炸與沖擊;2006年02期
6 胡時(shí)勝;;Hopkinson壓桿實(shí)驗(yàn)技術(shù)的應(yīng)用進(jìn)展[J];實(shí)驗(yàn)力學(xué);2005年04期
7 黃志剛,柯映林,王立濤;金屬切削加工的熱力耦合模型及有限元模擬研究[J];航空學(xué)報(bào);2004年03期
8 方剛,曾攀;金屬正交切削工藝的有限元模擬[J];機(jī)械科學(xué)與技術(shù);2003年04期
9 方剛,曾攀;切削加工過程數(shù)值模擬的研究進(jìn)展[J];力學(xué)進(jìn)展;2001年03期
,本文編號(hào):1708584
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1708584.html