Mn、Sr、Sn對Mg-Zn-Ca合金非晶形成能力、腐蝕和壓縮性能的影響
本文選題:Mg-Zn-Ca非晶合金 切入點:非晶復合材料 出處:《西安工業(yè)大學》2017年碩士論文
【摘要】:相較于其他生物植入材料,鎂及其合金在密度、強度、彈性模量等方面存在著無可比擬的優(yōu)勢。近年來,將其作為可降解金屬植入材料引起了人們的廣泛關注。然而,鎂及鎂合金的生物應用由于腐蝕降解過快而受到限制。已有研究結果表明,Mg-Zn-Ca系列非晶合金具有良好的生物相容性、優(yōu)異的力學性能和耐蝕性,作為可降解生物醫(yī)用材料具有潛在的臨床應用價值。目前,Mg-Zn-Ca系合金非晶形成能力和腐蝕降解行為方面的研究還較少。本文以Mg_(65)Zn_(30)Ca_5合金為研究對象,采用熔體旋淬法和銅模噴鑄法制備了薄帶狀和棒狀試樣,通過XRD、SEM、DSC、電化學測試和壓縮實驗來研究了合金化元素Mn、Sr、Sn對Mg-Zn-Ca合金非晶形成能力、腐蝕和壓縮性能的影響規(guī)律,取得以下結果:(1)Mn元素的影響。利用熔融紡絲法和噴鑄法制備的Mg_(65)Zn_(30)Ca_5帶材和2mm棒材試樣均為完全非晶結構;添加不同含量的Mn元素時,帶材試樣依然為非晶結構,而2mm棒材試樣組織中逐漸析出了Mg相、Mn相、MgZn相,表明添加Mn元素損害了Mg_(65)Zn_(30)Ca_5的非晶形成能力。2mm棒材試樣電化學測試和浸泡實驗結果表明,處于完全非晶態(tài)的Mg_(65)Zn_(30)Ca_5合金耐蝕性最好,Mn元素添加量小于0.2at%時合金的耐蝕性影響不大。而當摻雜Mn元素含量大于0.2at%時,合金的耐蝕性隨Mn添加量增加明顯下降。壓縮力學實驗結果表明Mg_(65)Zn_(30)Ca_5的強度最高,為531.8MPa,加入Mn元素后使得合金的強度逐漸下降。(2)Sr元素的影響。在Mg_(65)Zn_(30)Ca_5合金中加入Sr元素,合金的非晶形成能力先隨Sr加入量的增加不斷提高,當Sr添加量為1at%時,合金具有最大的非晶形成能力。繼續(xù)增加Sr元素的添加量,合金的非晶形成能力反而減弱。2mm和4mm棒材試樣的電化學和浸泡實驗結果表明,含Sr試樣的耐蝕性均優(yōu)于不含Sr的Mg_(65)Zn_(30)Ca_5試樣,即加入Sr元素提高了合金的耐蝕性。力學實驗測試表明摻雜0.5at%、1.0at%、1.5at%的Sr元素后,合金的壓縮強度分別提高了4.07%、7.06%、1.57%,但塑性基本不變。(3)Sn元素的影響。不同Sn含量的薄帶試樣均為完全非晶態(tài),而2mm棒材試樣的組織結構由不含Sn的完全非晶態(tài)逐漸轉變?yōu)橛蒑g相和Mg2Sn相組成的晶態(tài),且析出晶體相的體積分數和尺寸隨著Sn含量的增加而增大,說明摻雜Sn元素降低了Mg-Zn-Ca合金的非晶形成能力。電化學測試和力學性能測試結果表明,隨著Sn元素加入量的增加,合金的耐蝕性和壓縮性能逐漸下降。
[Abstract]:Compared with other biological implants, magnesium and its alloys have unparalleled advantages in density, strength, elastic modulus and so on. In recent years, magnesium and its alloys have attracted much attention as biodegradable metal implants. The bioapplications of magnesium and magnesium alloys are limited by the rapid corrosion degradation. The results show that the Mg-Zn-Ca series amorphous alloys have good biocompatibility, excellent mechanical properties and corrosion resistance. As a biodegradable biomedical material, it has potential clinical application value. At present, there are few studies on amorphous forming ability and corrosion degradation behavior of Mg-Zn-Ca alloy. In this paper, Mg_(65)Zn_(30)Ca_5 alloy is taken as the research object. The thin strip and rod specimens were prepared by melt spinning and copper die spray casting. The effects of alloying element Mn-Sr-Sn on the amorphous forming ability, corrosion and compression properties of Mg-Zn-Ca alloy were studied by means of electrochemical test and compression test. The following results were obtained: the samples of Mg_(65)Zn_(30)Ca_5 strip and 2mm bar prepared by melt spinning method and spray casting method were all completely amorphous, and when different contents of mn element were added, the sample of Mg_(65)Zn_(30)Ca_5 strip was still amorphous structure. However, mg phase, mn phase and mg Zn phase were gradually precipitated in the microstructure of 2mm bar, which indicated that the addition of mn element damaged the amorphous forming ability of Mg_(65)Zn_(30)Ca_5. The corrosion resistance of Mg_(65)Zn_(30)Ca_5 alloy in completely amorphous state is the best when the content of mn element is less than 0.2 at%. The corrosion resistance of Mg_(65)Zn_(30)Ca_5 alloy with doping mn content greater than 0.2 at% has little effect on the corrosion resistance of the alloy. The corrosion resistance of the alloy decreased obviously with the increase of mn content. The compressive mechanical test results showed that the strength of Mg_(65)Zn_(30)Ca_5 was the highest (531.8 MPA). The strength of the alloy decreased gradually after adding mn element. The effect of Sr element on the strength of the alloy was observed. Sr element was added to the Mg_(65)Zn_(30)Ca_5 alloy. The amorphous forming ability of the alloy first increases with the increase of Sr content. When the Sr content is 1 at%, the alloy has the largest amorphous forming ability. On the contrary, the amorphous forming ability of the alloy was weakened. The electrochemical and immersion tests of the specimens of 0.2mm and 4mm bars showed that the corrosion resistance of the samples containing Sr was better than that of the samples without Sr, and the corrosion resistance of the specimens containing Sr was better than that of the samples without Sr. That is, the corrosion resistance of the alloy was improved by adding Sr element. The compressive strength of the alloy was increased by 4.07 and 7.06, respectively, but the plasticity of the alloy was almost unchanged. The thin strip samples with different Sn contents were completely amorphous. However, the microstructure of 2mm bars was gradually changed from a completely amorphous state without Sn to a crystalline state composed of mg phase and Mg2Sn phase, and the volume fraction and size of precipitated crystal phase increased with the increase of Sn content. The results of electrochemical and mechanical properties tests show that the corrosion resistance and compressibility of Mg-Zn-Ca alloy decrease with the increase of Sn content.
【學位授予單位】:西安工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TG139.8
【參考文獻】
相關期刊論文 前9條
1 李培友;孟凡瑩;王永善;;四元Cu-Ti-Ni-Zr合金玻璃形成能力與力學性能[J];材料熱處理學報;2016年10期
2 Jingfeng Wang;Yang Li;Song Huang;Yiyun Wei;Xingfeng Xi;Kaiyong Cai;Fusheng Pan;;Effects of Y on the Microstructure, Mechanical and Bio-corrosion Properties of Mg-Zn-Ca Bulk Metallic Glass[J];Journal of Materials Science & Technology;2014年12期
3 孫亞娟;孫永麗;烏日嘎;;熱力學和動力學因素對塊體非晶合金玻璃形成能力的影響[J];稀有金屬材料與工程;2010年12期
4 ;Novel Fe-based amorphous magnetic powder cores with ultra-low core losses[J];Science China(Technological Sciences);2010年05期
5 黃紅霞;黃可龍;劉素琴;陳東洋;;球磨MgNi非晶儲氫合金電化學性能的研究[J];稀有金屬材料與工程;2010年04期
6 張博;趙德乾;潘明祥;汪衛(wèi)華;;金屬塑料的發(fā)明[J];物理;2006年02期
7 惠希東;董偉;王美玲;劉雄軍;于家伶;陳國良;;超常塑性Mg_(77)Cu_(12)Zn_5Y_6塊體金屬玻璃基內生復合材料[J];科學通報;2006年02期
8 郝雷;陳學定;袁子洲;王曉軍;;大塊非晶合金的研究進展[J];材料導報;2004年08期
9 門華,徐堅;Mg-Cu-Zn-Y塊體金屬玻璃的形成[J];金屬學報;2001年12期
相關碩士學位論文 前3條
1 魏怡蕓;MgZnCa基非晶及其復合材料的制備、力學和腐蝕性能研究[D];重慶大學;2012年
2 吳夏;鎂基非晶合金及其復合材料的制備與性能研究[D];重慶大學;2009年
3 張扣山;鎂基塊體非晶晶化行為研究及復合材料制備[D];江蘇大學;2006年
,本文編號:1694183
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1694183.html