回轉體內表面波紋微結構的電化學加工技術基礎研究
本文選題:波紋微結構 切入點:電鑄 出處:《南京航空航天大學》2017年碩士論文
【摘要】:回轉體內表面波紋微結構是微機電系統(tǒng)中廣泛使用的典型結構,波紋筋槽寬僅有0.1mm,深寬比大,無法通過傳統(tǒng)的加工方式制備。電化學加工以“自然狀態(tài)”近似原子單位的尺度量級實現(xiàn)材料的去除與堆積,從原理上是極具優(yōu)勢的微結構加工方法。本文采用電鑄技術制備回轉體內表面波紋微結構,提出了兩種芯模制備方案并展開技術研究,對各自的加工效果進行了試驗研究及對比分析。主要研究內容如下:1、提出了微細電解線切割加工整體芯模的方法。建立了微細電解線切割回轉體外表面波紋微結構的電場模型,闡明了回轉體外表面電解線切割過程中加工區(qū)域電流密度的變化規(guī)律。改造微細電解線切割的試驗系統(tǒng),基于LabWindows/CVI平臺開發(fā)了相應的加工控制和檢測系統(tǒng)。分析了鋁在電解過程中的鈍化現(xiàn)象。試驗探究了不同工藝參數(加工電壓、脈沖頻率、主軸轉速)對回轉體外表面波紋微結構微細電解線切割加工的影響。采用優(yōu)化的工藝參數組合:加工電壓9V、脈沖頻率150KHz、電極轉速2000rpm,加工出槽寬80μm、槽深100μm、槽間距100μm的回轉體外表面波紋微結構。2、提出了電化學組合加工方法制備組合芯模:利用微細電解切割加工出的鋁環(huán)和電鑄加工的銅環(huán)進行組裝,得到組合芯模。分析了微螺旋電極電解切割加工的強化傳質機理,探究了絡合劑的絡合反應對提高電解加工表面質量的機理。改造微螺旋電極電解切割的試驗系統(tǒng),并試驗探究了不同工藝參數(加工電壓、微螺旋電極直徑、絡合劑濃度)對于加工縫寬和加工效率的影響。采用優(yōu)化的工藝參數組合:加工電壓8.5V、微螺旋電極直徑0.3mm、絡合劑GLDA濃度15g/L、進給速度1.2μm/s,在100μm厚鋁片上加工出外徑4.2mm,內徑3.2mm的鋁環(huán)。最后對組合芯模的裝配效果進行了分析。3、介紹了電鑄加工回轉體內表面波紋微結構的試驗原理,搭建了回轉體內表面波紋微結構電鑄加工的試驗裝置。對不同方法制備的芯模電鑄效果進行了比較分析。最后確定了采用電化學加工方法制備組合芯模,再進行回轉體內表面波紋微結構電鑄加工的工藝路線,制備出筋寬104.8±6.5μm、深476.2±9.2μm的回轉體內表面波紋微結構。
[Abstract]:The corrugated micro-structure of the surface of the rotating body is a typical structure widely used in MEMS. The groove width of the corrugated rib is only 0.1 mm and the aspect ratio is large. It can not be prepared by traditional processing. Electrochemical machining can remove and pile up materials in the order of "natural state" approximate atomic units. In this paper, electroforming technology is used to fabricate corrugated microstructures on the surface of rotating body, and two kinds of core mould preparation schemes are proposed and the technical research is carried out. The experimental study and comparative analysis of their machining effects are carried out. The main research contents are as follows: 1. The method of micro electrolysis wire cutting for the whole core mold is put forward. The electric field model of micro electrolysis wire cutting rotating surface corrugation microstructure is established. The changing rule of current density in machining area during electrolysis wire cutting process of rotating external surface is expounded, and the test system of micro electrolysis wire cutting is reformed. Based on the LabWindows/CVI platform, the corresponding machining control and detection system was developed. The passivation phenomenon of aluminum in electrolysis process was analyzed. The different process parameters (processing voltage, pulse frequency, pulse frequency) were investigated. The effect of spindle speed on micro electrolysis wire cutting with corrugated microstructure on the surface of rotating external surface. The optimized process parameters were adopted: processing voltage 9V, pulse frequency 150kHz, electrode speed 2000rpm, groove width 80 渭 m, groove depth 100 渭 m, slot spacing 100 渭 m. Based on the corrugated microstructure of the rotating external surface, an electrochemical combined machining method was proposed to prepare the composite core mold. The composite core mold was assembled by micro-electrolysis cutting aluminum ring and electroforming copper ring. The combined core mould was obtained. The mechanism of enhanced mass transfer in electrolytic cutting of microhelical electrode was analyzed, the mechanism of complexing reaction of complexing agent to improve the surface quality of ECM was explored, and the experimental system of electrolytic cutting of micro-helical electrode was reformed. Different process parameters (processing voltage, diameter of microhelical electrode) were investigated. The effect of complexing agent concentration on machining seam width and machining efficiency. The optimized process parameters were as follows: processing voltage 8.5 V, diameter of microhelical electrode 0.3 mm, concentration of GLDA 15 g / L, feed speed 1.2 渭 m / s, external diameter 4.2 mm on 100 渭 m thick aluminum sheet. Aluminum ring with inner diameter 3.2mm. Finally, the assembly effect of the combined core die is analyzed, and the experimental principle of electroforming the corrugated micro-structure on the surface of rotary body is introduced. An experimental device for electroforming of corrugated microstructures on the surface of rotating body was set up. The electroforming effects of core mould prepared by different methods were compared and analyzed. Finally, the electrochemical machining method was used to prepare composite core mould. The corrugated micro-structure of the inner surface of the rotary body was prepared by electroforming the corrugated surface of the body with a width of 104.8 鹵6.5 渭 m and a depth of 476.2 鹵9.2 渭 m.
【學位授予單位】:南京航空航天大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TG662
【參考文獻】
相關期刊論文 前10條
1 趙秋穎;何輝文;張海奇;;一種Ka波段雙槽波紋喇叭天線的設計[J];雷達科學與技術;2016年02期
2 楊文文;劉文朋;;太赫茲通信研究進展[J];北京聯(lián)合大學學報(自然科學版);2015年04期
3 唐岳;羅紅平;吳明;孫濤濤;尹瀟靚;;電液束加工的發(fā)展與應用[J];電加工與模具;2015年S1期
4 謝蘇隆;葉長利;于飛;;高性能饋源喇叭綜述[J];空間電子技術;2014年04期
5 馮偉;張戎;曹俊誠;;太赫茲雷達技術研究進展[J];物理;2013年12期
6 王建國;王祝堂;;航空航天變形鋁合金的進展(1)[J];輕合金加工技術;2013年08期
7 Qu Ningsong;Fang Xiaolong;Li Wei;Zeng Yongbin;Zhu Di;;Wire electrochemical machining with axial electrolyte flushing for titanium alloy[J];Chinese Journal of Aeronautics;2013年01期
8 陳勇華;;微機電系統(tǒng)的研究與展望[J];電子機械工程;2011年03期
9 賈繼欣;曲寧松;房曉龍;曾永彬;;毛細管電極電液束加工微小孔試驗研究[J];電加工與模具;2011年02期
10 李冬林;朱荻;李寒松;;輔助陽極掩模板電解加工技術[J];南京航空航天大學學報;2010年04期
相關會議論文 前1條
1 張鵬飛;房曉龍;曾永彬;鄒祥和;;微螺旋電極電解切割GH4169試驗研究[A];第16屆全國特種加工學術會議論文集(上)[C];2015年
相關博士學位論文 前3條
1 王昆;微細電解線切割加工技術的基礎研究[D];南京航空航天大學;2007年
2 萬熠;高速銑削航空鋁合金刀具失效機理及刀具壽命研究[D];山東大學;2006年
3 明平美;UV-LIGA-微細電火花加工組合制造技術基礎研究[D];南京航空航天大學;2006年
相關碩士學位論文 前3條
1 朱兵;厚不銹鋼板的微細電解線切割加工技術研究[D];南京航空航天大學;2010年
2 李萌;饋源喇叭天線的研究[D];西安電子科技大學;2010年
3 張美麗;鈦合金電解加工基礎試驗研究[D];南京航空航天大學;2007年
,本文編號:1693034
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1693034.html