可溶鎂合金力學(xué)性能及溶解性能試驗研究
本文選題:可溶鎂合金 切入點:結(jié)構(gòu)功能一體化材料 出處:《大連海事大學(xué)》2017年碩士論文
【摘要】:海水具有很強(qiáng)的腐蝕性,所以像鎂合金這類不耐腐蝕的金屬在船舶工業(yè)和海洋工程裝備上的應(yīng)用并不是很廣泛。為了順應(yīng)社會的快速發(fā)展,船舶和海洋裝備就需要朝著更細(xì)化、更多元的方向邁進(jìn),所以在海洋領(lǐng)域中,多功能材料的開發(fā)顯得刻不容緩。鎂合金是一類擁有多種優(yōu)異特性的金屬材料,在多功能材料領(lǐng)域有著巨大的開發(fā)前景。早在20世紀(jì)80年代,便開始利用原電池原理開發(fā)鎂合金在海洋領(lǐng)域的應(yīng)用,比如,用于陰極保護(hù)的鎂合金犧牲陽極,海上重要儀器回收裝置或定時觸發(fā)裝置、氫氣浮力裝置等等。然而,以往對鎂合金溶解性的探究不夠深入,缺乏系統(tǒng)的理論和試驗研究來指導(dǎo)應(yīng)用。本文研究對象可溶鎂合金是一種既可以發(fā)揮金屬強(qiáng)度硬度方面優(yōu)良的力學(xué)性能又能在特定溶液條件下溶解且不對其工作環(huán)境造成破壞的一類結(jié)構(gòu)功能一體化合金。首先通過粉末燒結(jié)的方法制備了不同成分的可溶鎂合金,然后通過組織觀察、力學(xué)性能測試及溶解試驗對其性能進(jìn)行了研究和討論,并為以后實際應(yīng)用提供理論基礎(chǔ)和試驗依據(jù)。主要成果如下:1.采用粉末冶金工藝制備出可溶鎂合金并通過對合金顯微組織觀察表明:粉末燒結(jié)方法可制備出晶粒粒度均勻、組織致密的合金,且晶粒平均尺寸與燒結(jié)體粉末鎂顆粒尺寸相當(dāng)。2.對不同成分的合金試樣進(jìn)行了硬度和強(qiáng)度測試,結(jié)果表明,Al元素含量及Al粉末顆粒的粒度對合金的力學(xué)性能均有影響:①在Al含量2.5~6.5%wt.范圍內(nèi),隨著Al含量的增加,合金硬度和壓縮強(qiáng)度增大;②納米Al顆粒制備的合金硬度和壓縮強(qiáng)度明顯高于微米Al顆粒制備的合金。3.設(shè)計了可溶鎂合金溶解試驗,通過試驗研究了基體因素和外部條件對鎂合金溶解性能的影響,結(jié)果表明:①隨著Al含量的增多,試樣的溶解速率變快;②微米Al顆粒制備的合金比納米Al顆粒制備的合金溶解速率快;③溶液溫度影響合金溶解速率,溫度越高合金溶解速率越快;④溶液中Cl-濃度影響合金溶解速率,Cl-濃度高的溶液合金溶解速率快。
[Abstract]:Seawater is so corrosive that non-corrosive metals such as magnesium alloys are not widely used in shipbuilding and marine engineering equipment. In order to adapt to the rapid development of society, ships and marine equipment need to be further refined. In the ocean field, the development of multifunctional materials is urgent. Magnesium alloy is a kind of metal material with many excellent properties. As early as the 1980s, we began to use the principle of primary battery to develop magnesium alloy applications in the ocean field, such as the sacrificial anode for cathodic protection of magnesium alloy. Important offshore instruments such as recovery devices or timing triggers, hydrogen buoyancy devices, etc., however, previous research on the solubility of magnesium alloys is not enough. The research object of this paper is soluble magnesium alloy, which can not only exert the excellent mechanical properties of metal strength and hardness, but also dissolve and do not work in a specific solution. A class of structure-functional integrative alloys caused by environmental damage. Firstly, soluble magnesium alloys with different compositions were prepared by powder sintering. Then the properties were studied and discussed by microstructure observation, mechanical property test and dissolution test. The main results are as follows: 1.Soluble magnesium alloys were prepared by powder metallurgy process and the microstructure of the alloys was observed. The results showed that the grain size was uniform by powder sintering method. The microstructure of the alloy is dense, and the average grain size is equal to that of the sintered powder magnesium. The hardness and strength of the alloy samples with different compositions are tested. The results show that the content of Al and the particle size of Al powder have an effect on the mechanical properties of the alloy. In the range of 2.5% Al content and 6.5 wt. with the increase of Al content, the mechanical properties of the alloy increase with the increase of Al content. The hardness and compressive strength of the alloy prepared by increasing the hardness and compression strength of the alloy prepared by the nano-Al particles were obviously higher than that by the alloy prepared by the micro-Al particles. The dissolution test of the soluble magnesium alloy was designed. The effects of matrix factors and external conditions on the solubility of magnesium alloy were studied. The results showed that the content of Al increased with the increase of Al content. The dissolution rate of the alloy prepared by Al particles of 2 micron is faster than that of the alloy prepared by nano-Al particles. The solution temperature affects the dissolution rate of the alloy. The higher the temperature, the faster the dissolution rate of alloys is.
【學(xué)位授予單位】:大連海事大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG146.22
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王松林;;船軸的熱處理及其力學(xué)性能[J];大型鑄鍛件;1987年03期
2 ;力學(xué)性能二級人員取證復(fù)習(xí)參考題(之一)解答[J];理化檢驗(物理分冊);1997年12期
3 ;力學(xué)性能二級人員取證復(fù)習(xí)參考題(之三)解答[J];理化檢驗(物理分冊);1998年04期
4 陳金寶;高溫力學(xué)性能二級人員取證復(fù)習(xí)參考題(持久部分之五)解答[J];理化檢驗(物理分冊);2000年02期
5 潘葉金;電弧熔鑄的Nb-18Si-5Mo-5Hf-2C復(fù)合材料的力學(xué)性能[J];中國鉬業(yè);2003年03期
6 張美忠,李賀軍,李克智;三維編織復(fù)合材料的力學(xué)性能研究現(xiàn)狀[J];材料工程;2004年02期
7 游宇,周新貴;三維編織復(fù)合材料的力學(xué)性能[J];纖維復(fù)合材料;2004年04期
8 羅文波;唐欣;譚江華;趙榮國;;流變材料長期力學(xué)性能加速表征的若干進(jìn)展[J];材料導(dǎo)報;2007年07期
9 嚴(yán)振宇;徐強(qiáng);朱時珍;劉穎;;Sm_2Zr_2O_7-ZrB_2/SiC復(fù)合材料的制備及力學(xué)性能研究[J];稀有金屬材料與工程;2011年S1期
10 瞿欣;孫汝n,
本文編號:1654771
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1654771.html