T2紫銅薄板球冠陣列微結(jié)構(gòu)脹形工藝研究
發(fā)布時間:2018-03-23 03:18
本文選題:T2紫銅薄板 切入點:微脹形 出處:《哈爾濱工業(yè)大學》2017年碩士論文 論文類型:學位論文
【摘要】:近年來,金屬薄板和薄壁零件大量應(yīng)用在微電子和微機電系統(tǒng)產(chǎn)品中,對微型沖壓件的需求量急劇增加。傳統(tǒng)的塑性成形設(shè)備和工藝方法在微沖壓件尺寸更小、結(jié)構(gòu)更復雜、成形質(zhì)量要求更高時已不能滿足需要。隨著數(shù)值模擬、輔助物理場、新設(shè)備、無;蜍浤3尚蔚燃夹g(shù)的發(fā)展應(yīng)用,金屬薄板微沖壓技術(shù)得到快速深入的發(fā)展。本文旨在通過單向微拉伸實驗獲得T2紫銅薄板力學性能參數(shù),通過數(shù)值模擬分析優(yōu)化工藝方案,采用微脹形工藝成形T2紫銅薄板球冠陣列微結(jié)構(gòu)件,并通過質(zhì)量分析等獲得最優(yōu)工藝路線。開展T2紫銅薄板單向微拉伸實驗,研究熱處理溫度、薄板厚度對其力學性能的影響規(guī)律。在350~750℃條件下對20~100μm板厚試樣分別進行熱處理,然后進行微拉伸實驗,結(jié)果表明,隨著熱處理溫度升高,T2紫銅薄板屈強比先減小后增大,550℃時薄板具有較高的均勻延伸率,塑性變形能力較強;隨著板厚的增加,T2紫銅薄板屈強比不斷減小,板厚100μm的T2紫銅薄板在熱處理溫度550℃時均勻延伸率最大,塑性變形能力較強。進行T2紫銅薄板球冠陣列微結(jié)構(gòu)件微脹形過程數(shù)值模擬,研究圓角半徑、陣列形狀、薄板厚度對微脹形過程影響規(guī)律。結(jié)果表明,凸凹模倒圓角R0.1可以減小應(yīng)力集中和最大減薄量,提高塑性變形均勻性;球冠微結(jié)構(gòu)陣列圓心距2.5mm時,微脹形件球冠微結(jié)構(gòu)陣列側(cè)壁、交匯點、交匯邊應(yīng)力、應(yīng)變值和板材減薄程度較小;隨著板材厚度增加,微脹形件球冠微結(jié)構(gòu)陣列側(cè)壁、交匯點、交匯邊處應(yīng)力、應(yīng)變值減小。所以對凸凹模加工球冠微結(jié)構(gòu)陣列交匯點、交匯邊采用倒圓角R0.1優(yōu)化處理,微脹形件陣列圓心距采用2.5mm。研究T2紫銅薄板球冠陣列微結(jié)構(gòu)件微脹形變形行為,分析熱處理溫度、薄板厚度對微脹形影響規(guī)律。結(jié)果表明,微脹形件側(cè)壁減薄率最大,球冠微結(jié)構(gòu)陣列交匯邊減薄率小于陣列交匯點,中心球冠底部減薄率最小;隨著熱處理溫度升高,微脹形件側(cè)壁、球冠微結(jié)構(gòu)陣列交匯點、交匯邊、中心球冠底部減薄率先減小后增大,溫度較高時壁厚減薄較小、分布較均勻,成形質(zhì)量更高;隨著板材厚度減小,微脹形件側(cè)壁破裂越嚴重,成形質(zhì)量降低;熱處理溫度為550℃、板厚100μm時微脹形件壁厚分布最均勻,成形質(zhì)量最好;微脹形件側(cè)壁凸模圓角處減薄最嚴重,熱處理溫度350℃時凸模圓角處最大減薄率達56.5%。開展T2紫銅薄板球冠陣列微結(jié)構(gòu)件超聲振動輔助微脹形實驗,研究軟模、振動保壓時間、薄板厚度對微脹形影響規(guī)律。結(jié)果表明,超聲振動輔助軟模微脹形工藝成形球冠微結(jié)構(gòu)陣列貼膜性更好,成形高度提高11.66%,壁厚分布更加均勻,板厚20μm、40μm微脹形件側(cè)壁破裂情況得到改善,顯著提高了T2紫銅薄板的成形極限,質(zhì)量明顯優(yōu)于傳統(tǒng)微脹形工藝。微脹形件在熱處理溫度550℃、板厚100μm、振動保壓時間80s時成形質(zhì)量最好。
[Abstract]:In recent years, sheet metal and thin-walled parts have been widely used in micro-electronic and micro-electromechanical system products, and the demand for micro-stamping parts has increased dramatically. Traditional plastic forming equipment and process methods are smaller in size and more complex in structure. With the development of numerical simulation, auxiliary physical field, new equipment, die less or soft die forming and so on, The technology of sheet metal micro-stamping has been developed rapidly and deeply. This paper aims to obtain mechanical properties of T2 copper sheet by uniaxial micro-tensile test, and optimize the process scheme by numerical simulation analysis. The microbulging process was used to form the spherical coronal array microstructures of T2 red copper sheet, and the optimum process route was obtained through quality analysis. The unidirectional microtensile test of T2 red copper sheet was carried out, and the heat treatment temperature was studied. The effect of thin plate thickness on mechanical properties was studied. The specimens of 20 ~ 100 渭 m thick plates were heat-treated at 350 ~ 750 鈩,
本文編號:1651661
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1651661.html
最近更新
教材專著