圓柱面翻邊成形預(yù)制孔優(yōu)化設(shè)計方法研究
本文選題:翻邊成形 切入點:預(yù)制孔 出處:《山東建筑大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著工業(yè)技術(shù)和城市建設(shè)的快速發(fā)展,大型管網(wǎng)在化工企業(yè)、油氣運輸和城市排污等系統(tǒng)中獲得了廣泛的應(yīng)用。隨著管網(wǎng)向大型化、高壓化發(fā)展,對管道的安全性提出了越來越高的要求。管道接頭類零件作為管網(wǎng)系統(tǒng)的關(guān)鍵構(gòu)件,其市場需要越來越大,同時也對該類零件的生產(chǎn)工藝提出了更高的要求。管道接頭是管網(wǎng)系統(tǒng)中加工最為復(fù)雜、材料浪費最多環(huán)節(jié),研究一種新型的高效、節(jié)約材料、綠色的金屬管道接頭成形工藝方法具有重要的工程應(yīng)用價值。因此本文研究和討論了一種圓柱面支管成形的新方法——翻邊成形加工工藝。與傳統(tǒng)管道支管的制作工藝相比,翻邊成形的加工工藝更高效、更節(jié)約材料、零件物理性能也更好,而且翻邊成形的管道支管,主管與支管的接觸部分比較圓滑,可以大大減少液體在分支處的流動阻力。但是,在圓柱面上翻邊支管在國內(nèi)的研究還是處于初級階段,滿足多樣式支管成形的工藝要求還比較困難。本文就圓柱面翻邊成形的幾處關(guān)鍵的問題進行了討論:(1)利用翻邊成形預(yù)制孔設(shè)計的等線長理論,考慮翻邊位置的偏心和翻邊形狀的變化等情況,建立了圓柱面翻邊成形預(yù)制孔數(shù)學(xué)模型,并應(yīng)用Delphi開發(fā)了預(yù)制孔計算的軟件,可直接根據(jù)工藝參數(shù)計算出預(yù)制孔的形狀和尺寸,并可以以圖形和數(shù)據(jù)兩種方式輸出計算結(jié)果。(2)利用SolidWorks建立坯料和模具的幾何模型,利用有限元分析軟件DYNAFORM對圓柱面翻邊成形過程進行了成形過程分析。應(yīng)用模擬結(jié)果并對數(shù)學(xué)模型進行了驗證,結(jié)果表明所建立的數(shù)學(xué)模型基本正確,模擬成形的高度與理想值接近。(3)設(shè)計制造了圓孔和方孔的圓柱面翻邊成形模具,利用液壓機對圓柱面翻邊成形過程進行了實驗研究,并將實驗結(jié)果與模擬結(jié)果相對比,二者吻合良好,表明本文建立的有限元模型和采用的模擬分析方法是可靠的。(4)針對圓柱面翻邊成形預(yù)制孔設(shè)計問題,以翻邊端口平整度為優(yōu)化目標(biāo),以成形工件的完整性為約束條件,建立優(yōu)化模型;以有限元模擬為目標(biāo)函數(shù)和約束條件的求解器,以基于等線長理論的優(yōu)選搜索法為優(yōu)化設(shè)計方法,對優(yōu)化模型進行了求解。優(yōu)化設(shè)計結(jié)果表明,所建立的優(yōu)化設(shè)計方法收斂速度快,優(yōu)化結(jié)果可靠。
[Abstract]:With the rapid development of industrial technology and urban construction, large-scale pipe networks have been widely used in chemical enterprises, oil and gas transportation and urban sewage systems. As the key component of pipe network system, the market demand of pipe joint parts is increasing. At the same time, the production technology of this kind of parts is also put forward higher requirements. Pipeline joint is the most complicated and wasteful link in pipe network system. A new type of efficient and economical material is studied. The green metal pipe joint forming process has important engineering application value. Therefore, a new forming method of cylindrical branch pipe forming, flanging forming process, is studied and discussed in this paper. The flanging forming process is more efficient, saves more material, and the physical properties of the parts are better, and the pipe branch pipe formed by the flanging forming, the contact part between the supervisor and the branch pipe is smooth, which can greatly reduce the flow resistance of the liquid at the branch. The domestic study of flanged branch tubes on cylindrical surfaces is still in its infancy. It is difficult to meet the technological requirements of multi-type branch tube forming. In this paper, several key problems of cylindrical flanging forming are discussed in this paper. The theory of equal line length is used to design prefabricated holes for flanging forming. Considering the eccentricity of flanging position and the change of flanging shape, the mathematical model of prefabricated hole for cylindrical flanging forming is established, and the software for calculating prefabricated hole is developed by using Delphi. The shape and size of prefabricated hole can be calculated directly according to the technological parameters. The geometric model of blank and die can be established by using SolidWorks. The forming process of cylindrical flanging is analyzed by finite element analysis software DYNAFORM. The simulation results and the mathematical model are verified. The results show that the established mathematical model is basically correct. The cylindrical flanging forming die of circular hole and square hole is designed and manufactured. The process of cylinder flanging forming is studied experimentally by hydraulic press, and the experimental results are compared with the simulation results. The results show that the finite element model and the simulation analysis method are reliable, aiming at the design of prefabricated holes for flanging forming of cylindrical surface, and the flatness of flanging port is the optimization objective. Taking the integrity of the formed workpiece as the constraint condition, the optimization model is established, the finite element simulation is used as the solver of the objective function and the constraint condition, and the optimal selection search method based on the equal-line length theory is used as the optimization design method. The optimal design results show that the proposed optimal design method converges quickly and the optimization results are reliable.
【學(xué)位授予單位】:山東建筑大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG306
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王麗娟;;滾壓包邊成形缺陷的研究[J];現(xiàn)代制造技術(shù)與裝備;2016年07期
2 申偉;趙新剛;趙金升;;翻邊成形過程表面缺陷問題解決方案[J];模具制造;2016年01期
3 李軍;;拉延筋對曲面曲線翻邊的成形影響研究[J];汽車工程學(xué)報;2015年06期
4 王燕;師朝賢;;車頂拉伸翻邊成形數(shù)值模擬及分析[J];模具制造;2015年09期
5 劉浪;柳玉起;章志兵;;基于NX平臺的汽車覆蓋件翻邊成形與運動仿真系統(tǒng)[J];鍛壓技術(shù);2015年06期
6 趙會敏;李軍;;基于Dynaform的一種零件連續(xù)翻邊成形方法[J];汽車零部件;2015年01期
7 李紹春;初永玲;;1060鋁燈罩翻邊成形工藝分析及模具設(shè)計[J];熱加工工藝;2014年11期
8 周杰;戴洪;陳勇鋒;陸俊江;姚小兵;;拉深翻邊復(fù)合成形工藝參數(shù)多目標(biāo)優(yōu)化設(shè)計[J];上海交通大學(xué)學(xué)報;2014年03期
9 譚利廣;肖小亭;溫華典;陳巧玉;;帶預(yù)制孔筒形件拉深成形金屬流動規(guī)律的研究[J];鍛壓技術(shù);2011年06期
10 李兆東;于靜之;王忠雷;陳軍;;鋼制管路三通支路翻邊成形工藝方法研究[J];熱加工工藝;2011年19期
相關(guān)碩士學(xué)位論文 前7條
1 王美微;助力器殼體沖孔翻邊參數(shù)預(yù)測及優(yōu)化設(shè)計仿真[D];吉林大學(xué);2016年
2 李洪穎;高強鋼板料翻邊成形回彈數(shù)值模擬及實驗研究[D];山東大學(xué);2016年
3 李軍;鈑金件曲面連續(xù)翻邊成形數(shù)值模擬與工藝優(yōu)化設(shè)計研究[D];合肥工業(yè)大學(xué);2016年
4 王飛;高強度鋼長程翻邊工藝材料回彈規(guī)律研究[D];杭州電子科技大學(xué);2015年
5 羅慧娜;基于AUTOFORM轎車行李箱內(nèi)板成形工藝優(yōu)化及模具設(shè)計[D];湘潭大學(xué);2014年
6 肖夏;曲面翻邊件的數(shù)值模擬及工藝參數(shù)優(yōu)化研究[D];南昌大學(xué);2013年
7 張其龍;局部自阻電加熱數(shù)控漸進成形翻邊技術(shù)研究[D];南京航空航天大學(xué);2013年
,本文編號:1641654
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1641654.html