三種常用耐磨鋼的摩擦學(xué)性能研究
本文選題:中錳鋼 切入點(diǎn):高錳鋼 出處:《中國(guó)礦業(yè)大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:本文對(duì)中錳鋼、高錳鋼(Mn13)以及馬氏體耐磨鋼(HD400)三種耐磨鋼進(jìn)行了不同載荷下的滑動(dòng)磨損試驗(yàn)、兩體磨料磨損試驗(yàn)、三體磨料磨損試驗(yàn)以及不同沖擊功下的沖擊磨料磨損試驗(yàn)。對(duì)其耐磨性能進(jìn)行了系統(tǒng)的評(píng)價(jià),并對(duì)其力學(xué)性能、表面磨損形貌進(jìn)行了實(shí)驗(yàn)研究,建立了磨料對(duì)試樣表面破壞機(jī)理影響的模型;最后對(duì)中錳鋼、高錳鋼(Mn13)的加工硬化機(jī)理進(jìn)行了分析。中錳鋼在硬質(zhì)磨料磨損條件下耐磨性較好,而HD400在軟質(zhì)磨料條件下耐磨性較好,而中錳鋼和Mn13在干摩擦滑動(dòng)磨損條件下的耐磨性好于HD400。在沖擊磨料磨損試驗(yàn)中,HD400在沖擊功較高時(shí)耐磨性較好,其與Mn13在低沖擊功下耐磨性較差,而中錳鋼在所有沖擊條件下都具有較好的耐磨性能。三種耐磨鋼在不同磨損條件下,其磨損機(jī)理不同。而且在添加磨料的滑動(dòng)磨損與兩體磨料磨損試驗(yàn)中,磨料運(yùn)動(dòng)方式對(duì)試樣表面的破壞機(jī)制有重要影響。在滑動(dòng)磨損試驗(yàn)中,當(dāng)磨料在上下試樣之間滑動(dòng)時(shí),磨料對(duì)試樣表面造成犁溝;而當(dāng)磨料在上下試樣之間滾動(dòng)時(shí),磨料對(duì)試樣表面造成鑿坑與切削。在兩體磨料磨損試驗(yàn)中,當(dāng)磨料垂直于試樣表面運(yùn)動(dòng)時(shí),磨料對(duì)試樣表面造成鑿削坑,而當(dāng)磨料平行于試樣表面運(yùn)動(dòng)時(shí),對(duì)試樣表面造成犁溝。中錳鋼的加工硬化性能優(yōu)于Mn13,尤其是在低載荷以及低沖擊功條件下。在沖擊磨料磨損試驗(yàn)中,中錳鋼在1J沖擊功下磨損表面加工硬化機(jī)理主要為體心立方馬氏體相變,并且有高密度位錯(cuò)。當(dāng)沖擊功升高至4J時(shí),中錳鋼磨損表面馬氏體轉(zhuǎn)變量增加。Mn13在1J沖擊功下磨損表面加工硬化機(jī)理為高密度位錯(cuò)、孿晶以及密排六方結(jié)構(gòu)的層錯(cuò),其在4J沖擊功下磨損表面加工硬化機(jī)理為體心立方馬氏體相變,且位錯(cuò)密度增大,位錯(cuò)相互纏結(jié)為位錯(cuò)胞與位錯(cuò)島。
[Abstract]:In this paper, three kinds of wear-resistant steels, medium manganese steel, high-manganese steel and martensite wear-resistant steel, are tested by sliding wear and two-body abrasive wear under different loads. The three-body abrasive wear test and the impact abrasive wear test under different impact work were carried out. The wear resistance was systematically evaluated, and the mechanical properties and surface wear morphology were studied experimentally. A model of the influence of abrasives on the surface failure mechanism of specimens was established. Finally, the work hardening mechanism of medium manganese steel and high manganese steel was analyzed. The wear resistance of medium manganese steel was better under the condition of hard abrasive wear. The wear resistance of HD400 is better than that of HD400 under soft abrasive condition, while that of medium manganese steel and Mn13 is better than that of HD400 under dry friction and sliding wear. The wear resistance of medium manganese steel is lower than that of Mn13 under low impact power, while medium manganese steel has better wear resistance under all impact conditions. The wear mechanism is different. In the sliding wear test of adding abrasive and two-body abrasive wear, the mode of abrasive movement has an important effect on the failure mechanism of the specimen surface. In the sliding wear test, when the abrasive slips between the upper and lower samples, The abrasive creates a plough on the surface of the specimen, and when the abrasive is rolling between the upper and lower samples, the abrasive causes chiseling and cutting on the surface of the specimen. In the two-body abrasive wear test, when the abrasive moves perpendicular to the surface of the specimen, The abrasive causes a chisel hole on the surface of the specimen, and when the abrasive moves parallel to the surface of the specimen, The working-hardening property of medium manganese steel is better than that of Mn13, especially under the condition of low load and low impact power. The machanism of wear surface work hardening of medium manganese steel under 1J impact work is mainly body-centered cubic martensitic transformation with high density dislocation. When the impact energy rises to 4J, the wear surface hardening mechanism is mainly body-centered cubic martensitic transformation. When the martensite transformation amount on the worn surface of medium manganese steel is increased. Mn13 is machined by high density dislocation, twin and stacking fault of dense hexagonal structure at 1J impact work. The work-hardening mechanism of the worn surface at 4J impact work is a body-centered cubic martensitic transformation, and the dislocation density increases, and the dislocation intertwined into dislocation cell and dislocation island.
【學(xué)位授予單位】:中國(guó)礦業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG142.12
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張巖;趙愛(ài)民;何建國(guó);尹鴻祥;張聰;;回火溫度對(duì)Cr8Ni2MoNb鋼組織與性能的影響[J];金屬熱處理;2015年03期
2 馬沖;李自剛;宋鳳鳴;王巍;胡曉萍;金學(xué)軍;;BW450馬氏體耐磨鋼在含高濃度石英砂的3.5wt%NaCl漿體中的腐蝕磨損[J];熱加工工藝;2014年22期
3 Xiang-tao DENG;Zhao-dong WANG;Yi HAN;Hui ZHAO;Guo-dong WANG;;Microstructure and Abrasive Wear Behavior of Medium Carbon Low Alloy Martensitic Abrasion Resistant Steel[J];Journal of Iron and Steel Research(International);2014年01期
4 李永堂;付建華;雷步芳;賈璐;匡利華;程忠陽(yáng);;多元低合金耐磨鋼破碎機(jī)襯板制造工藝研究[J];機(jī)械工程學(xué)報(bào);2013年12期
5 李楠;時(shí)捷;王存宇;陳為亮;惠衛(wèi)軍;曹文全;;冷軋中錳鋼退火過(guò)程中硬度及組織的演化[J];鋼鐵;2012年09期
6 趙杰;徐海峰;時(shí)捷;李箭;蒲健;曹文全;;細(xì)晶強(qiáng)化和位錯(cuò)強(qiáng)化對(duì)中錳馬氏體鋼的強(qiáng)化作用[J];鋼鐵;2012年08期
7 ;Microstructure and Mechanical Properties of High Manganese TRIP Steel[J];Journal of Iron and Steel Research(International);2012年04期
8 李楠;時(shí)捷;陳為亮;曹文全;;碳含量對(duì)冷軋中錳鋼雙相區(qū)退火組織和力學(xué)性能的影響[J];熱加工工藝;2012年02期
9 鄧想濤;王昭東;張逖;袁國(guó);付天亮;王國(guó)棟;;HB450低合金超高強(qiáng)耐磨鋼回火過(guò)程中的組織性能演變[J];鋼鐵;2011年05期
10 曹藝;王昭東;吳迪;張逖;;NM400高強(qiáng)度低合金耐磨鋼的組織與性能[J];東北大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年02期
相關(guān)碩士學(xué)位論文 前1條
1 徐文歡;冷軋中錳鋼的成形性能研究[D];昆明理工大學(xué);2012年
,本文編號(hào):1638784
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1638784.html