杠桿式高速精密數(shù)控沖床機(jī)構(gòu)的精度分析與設(shè)計(jì)
本文選題:高速?zèng)_床 切入點(diǎn):精度 出處:《南京理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著技術(shù)的革新,現(xiàn)代沖壓向著高速化和精密化方向發(fā)展,本文從機(jī)構(gòu)原理的創(chuàng)新設(shè)計(jì)入手,提出一種新型杠桿式高速?zèng)_床機(jī)構(gòu),重點(diǎn)研究該機(jī)構(gòu)的精度問(wèn)題,論文主要完成了以下幾個(gè)方面的研究:基于目前曲柄滑塊式高速壓力機(jī)原理機(jī)構(gòu)不足,提出一種杠桿式機(jī)構(gòu),該機(jī)構(gòu)最大的特點(diǎn)在于能夠避免主副滑塊因高速運(yùn)動(dòng)時(shí)產(chǎn)生水平分力,而不是像平衡慣性力那樣平衡水平分力,這樣有效減少機(jī)身周期性的振動(dòng),也極大的減少了主副滑塊與機(jī)身摩擦所產(chǎn)生的一大部分熱量。此外,杠桿式機(jī)構(gòu)簡(jiǎn)單,不需要進(jìn)行運(yùn)動(dòng)學(xué)參數(shù)的優(yōu)化,可極大簡(jiǎn)化設(shè)計(jì)過(guò)程。建立原理機(jī)構(gòu)的運(yùn)動(dòng)學(xué)模型,得到機(jī)構(gòu)運(yùn)動(dòng)學(xué)參數(shù)方程,依據(jù)同類型沖床設(shè)計(jì)各個(gè)桿件截面及長(zhǎng)度的尺寸參數(shù)。運(yùn)用達(dá)朗貝爾原理對(duì)機(jī)構(gòu)自身的動(dòng)平衡設(shè)計(jì)計(jì)算,得到桿件受力參數(shù)。隨后對(duì)機(jī)床的動(dòng)平衡進(jìn)行分析設(shè)計(jì),并建立實(shí)體樣機(jī)模型。根據(jù)機(jī)床各個(gè)桿件的尺寸參數(shù),按彈性體計(jì)算各桿件處于下死點(diǎn)受力狀態(tài)時(shí)的彈性變形量,并由傳動(dòng)鏈得到下死點(diǎn)的偏移量;诮(jīng)典Hertz理論和Persson理論,分別建立求解運(yùn)動(dòng)副接觸剛度的模型與方程。選取算例計(jì)算接觸變形量,由此計(jì)算接觸剛度,并分析不同轉(zhuǎn)速下的運(yùn)動(dòng)副接觸剛度的規(guī)律。同時(shí)根據(jù)各運(yùn)動(dòng)副配合實(shí)體模型,由ANSYS有限元分析計(jì)算出運(yùn)動(dòng)副的接觸剛度,并與理論結(jié)果進(jìn)行對(duì)比驗(yàn)證。運(yùn)動(dòng)副高速轉(zhuǎn)動(dòng)摩擦產(chǎn)生大量熱,導(dǎo)致零件的變形,嚴(yán)重影響了機(jī)構(gòu)的精度。根據(jù)傳熱學(xué)原理計(jì)算機(jī)床冷卻系統(tǒng)與運(yùn)動(dòng)機(jī)構(gòu)的冷卻換熱系數(shù),并采用能量平衡法建立計(jì)算求解運(yùn)動(dòng)副溫度場(chǎng)的有限差分方程,由溫度場(chǎng)得到運(yùn)動(dòng)副間隙尺寸變化。同時(shí)研究了主傳動(dòng)機(jī)構(gòu)、機(jī)身上梁溫度對(duì)下死點(diǎn)精度的影響,以及立柱的溫度對(duì)下死點(diǎn)的精度補(bǔ)償。對(duì)機(jī)身的振動(dòng)響應(yīng)研究建立在已知實(shí)體樣機(jī)模型以及機(jī)身所承受載荷基礎(chǔ)之上。將樣機(jī)模型導(dǎo)入ANSYS軟件,傅里葉變換機(jī)身載荷曲線并加載。以機(jī)身軸承座孔處的節(jié)點(diǎn)振動(dòng)響應(yīng)情況來(lái)反映機(jī)身振動(dòng),并以此表示下死點(diǎn)的振動(dòng)規(guī)律,另外分析了不同轉(zhuǎn)速以及不同載荷下的下死點(diǎn)振動(dòng)響應(yīng)規(guī)律。
[Abstract]:With the innovation of technology and the development of modern stamping towards high speed and precision, this paper starts with the innovative design of mechanism principle, and puts forward a new type of lever type high speed punching mechanism, focusing on the precision of the mechanism. In this paper, the following aspects have been studied: based on the shortage of the principle of crank and slider high speed press, a kind of lever mechanism is put forward. The main characteristic of the mechanism is that it can avoid the horizontal component force produced by the main and auxiliary slider when moving at high speed, instead of balancing the horizontal component force as the balance inertial force, which effectively reduces the periodic vibration of the fuselage. In addition, the lever mechanism is simple and does not need to optimize the kinematics parameters, which greatly simplifies the design process, and establishes the kinematics model of the principle mechanism. The kinematics parameter equation of the mechanism is obtained, and the dimension parameters of each member section and length are designed according to the same type punching machine. The dynamic balance design of the mechanism itself is calculated by using the Darumbelian principle. Then the dynamic balance of the machine tool is analyzed and designed, and the model of the solid prototype is established. According to the dimension parameters of each member of the machine tool, the elastic deformation of each member is calculated according to the elastic body when the member is in the state of stress at the lower dead point. Based on the classical Hertz theory and the Persson theory, the models and equations for solving the contact stiffness of the kinematic pair are established, and the contact deformation is calculated by selecting an example to calculate the contact stiffness. At the same time, the contact stiffness of the pair is calculated by ANSYS finite element analysis according to the solid model of each pair. The results are compared with the theoretical results. A large amount of heat is produced by the high speed rotational friction of the moving pair, which results in the deformation of the parts, which seriously affects the accuracy of the mechanism. According to the principle of heat transfer, the cooling heat transfer coefficient between the cooling system of the computer bed and the moving mechanism is calculated. Using the energy balance method, the finite difference equation is established to solve the temperature field of the moving pair. The change of the clearance size of the pair is obtained from the temperature field. At the same time, the influence of the temperature of the main transmission mechanism and the upper beam of the fuselage on the precision of the lower dead point is studied. The vibration response of the fuselage is based on the known solid prototype model and the load borne by the fuselage. The prototype model is imported into ANSYS software. Fourier transform the fuselage load curve and load. The vibration response of the node at the hole of the fuselage bearing seat is used to reflect the fuselage vibration. In addition, the response law of the lower dead point vibration under different rotational speeds and different loads is analyzed.
【學(xué)位授予單位】:南京理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG385.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王娟;史新宇;王文宇;;發(fā)動(dòng)機(jī)轉(zhuǎn)子平衡測(cè)量穩(wěn)定性技術(shù)研究[J];航空科學(xué)技術(shù);2015年07期
2 鹿新建;王曉東;李逸;田理中;季亞;;高速壓力機(jī)下死點(diǎn)動(dòng)態(tài)精度試驗(yàn)研究[J];鍛壓技術(shù);2015年06期
3 王學(xué)智;于天彪;孫雪;張校通;王宛山;;基于有限差分法的磨削溫度場(chǎng)模擬[J];中國(guó)工程機(jī)械學(xué)報(bào);2015年02期
4 蔣云帆;廖明夫;;航空發(fā)動(dòng)機(jī)高壓轉(zhuǎn)子前軸承剛度特性分析[J];推進(jìn)技術(shù);2014年08期
5 姚齊水;張然;余江鴻;楊文;;彈性復(fù)合圓柱滾子軸承動(dòng)態(tài)徑向剛度分析[J];機(jī)械傳動(dòng);2014年05期
6 舒勇東;;高速精密沖壓發(fā)展任重道遠(yuǎn)[J];金屬加工(熱加工);2014年03期
7 孫偉;孔祥希;汪博;聞邦椿;;直線滾動(dòng)導(dǎo)軌的Hertz接觸建模及接觸剛度的理論求解[J];工程力學(xué);2013年07期
8 孫明江;王興松;;閉式高速壓力機(jī)的隔振研究[J];控制工程;2013年04期
9 金旭星;;基于MATLAB的高速?zèng)_床系統(tǒng)振動(dòng)分析及平衡策略研究[J];機(jī)械設(shè)計(jì)與制造;2013年07期
10 高建民;史曉軍;許艾明;趙博選;;高速高精度機(jī)床熱分析與熱設(shè)計(jì)技術(shù)[J];中國(guó)工程科學(xué);2013年01期
,本文編號(hào):1634266
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1634266.html