脈沖振動(dòng)電解加工相位耦合控制策略研究與應(yīng)用
本文選題:電解加工 切入點(diǎn):振動(dòng) 出處:《南京航空航天大學(xué)》2017年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:電解加工技術(shù)是航空發(fā)動(dòng)機(jī)葉片、機(jī)匣等核心部件的關(guān)鍵制造技術(shù),但隨著航空工業(yè)的發(fā)展,新型發(fā)動(dòng)機(jī)零部件結(jié)構(gòu)日趨復(fù)雜,精度要求日益提高,對(duì)現(xiàn)有的電解加工技術(shù)提出了越來(lái)越多的挑戰(zhàn)。本文以提升電解加工精度與加工整平能力為目標(biāo),開(kāi)展脈沖振動(dòng)相位耦合電解加工技術(shù)研究,分析了脈沖振動(dòng)耦合電解加工的產(chǎn)物輸運(yùn)情況和加工電流,掌握了脈沖振動(dòng)相位耦合參數(shù)對(duì)加工精度與整平能力的影響,并采用脈沖振動(dòng)相位耦合技術(shù)完成了典型航空發(fā)動(dòng)機(jī)模鍛葉片加工試驗(yàn)。本文的主要研究?jī)?nèi)容如下:(1)搭建了脈沖振動(dòng)相位耦合研究平臺(tái)。設(shè)計(jì)了工具陰極往復(fù)機(jī)械振動(dòng)裝置與加工間隙可視化的工裝夾具,完善了基于IGBT的脈沖振動(dòng)相位耦合控制系統(tǒng),采用高速攝像、電流傳感器、電渦流位移傳感器、示波器和記錄儀建立了脈沖振動(dòng)相位耦合信號(hào)采集與檢測(cè)系統(tǒng),實(shí)現(xiàn)了加工電流波形、振動(dòng)位移波形、間隙內(nèi)視頻圖像等信息實(shí)時(shí)采集與記錄。(2)提出了脈沖振動(dòng)錯(cuò)位前置耦合策略。在分析直流與工具振動(dòng)耦合電解加工基礎(chǔ)上,發(fā)現(xiàn)了加工電流波形前置于工具陰極振動(dòng)波形的現(xiàn)象,提出了以直流與工具振動(dòng)耦合電解加工中電流波形的波峰為中心,對(duì)稱(chēng)分布脈沖電流開(kāi)通角的錯(cuò)位前置耦合策略。通過(guò)傳統(tǒng)與錯(cuò)位前置方法的對(duì)比試驗(yàn)、不同開(kāi)通角范圍的加工試驗(yàn),證明了脈沖振動(dòng)錯(cuò)位前置耦合策略的合理性。(3)開(kāi)展了脈沖振動(dòng)錯(cuò)位前置耦合電解加工試驗(yàn)研究。為了進(jìn)一步比較傳統(tǒng)與錯(cuò)位前置耦合方法的合理性,開(kāi)展了傳統(tǒng)同相位耦合與錯(cuò)位前置耦合的極限加工速度、最小穩(wěn)定加工間隙、加工整平能比對(duì)比試驗(yàn),試驗(yàn)結(jié)果表明錯(cuò)位前置耦合策略更具合理性。以典型航空發(fā)動(dòng)機(jī)渦輪葉片為對(duì)象,針對(duì)葉片模鍛毛坯試件精度差,余量小等特點(diǎn),采用錯(cuò)位前置耦合電解加工工藝成功加工出葉片試件,試件具有較好的加工精度與表面質(zhì)量。
[Abstract]:ECM technology is the key manufacturing technology of aero-engine blade, casing and other core components. However, with the development of aviation industry, the structure of new engine parts is becoming more and more complex, and the precision requirement is increasing day by day. More and more challenges have been put forward to the existing ECM technology. In order to improve the precision and leveling ability of ECM, the pulse vibration phase coupled ECM technology is studied in this paper. The product transport and machining current of pulse vibration coupled electrolytic machining are analyzed, and the influence of pulse vibration phase coupling parameters on machining accuracy and leveling ability is grasped. The pulse vibration phase coupling technique is used to complete the machining experiment of typical aero-engine die forging blade. The main research contents in this paper are as follows: 1) the research platform of pulse vibration phase coupling is built, and the tool cathode reciprocating machine is designed. Mechanical Vibration device and Machining clearance Visualization fixture, The pulse vibration phase coupling control system based on IGBT is perfected. The acquisition and detection system of pulse vibration phase coupling signal is established by using high speed camera, current sensor, eddy current displacement sensor, oscilloscope and recorder. The information of machining current waveform, vibration displacement waveform and video image in gap are collected and recorded in real time. The forward coupling strategy of pulse vibration dislocation is put forward. Based on the analysis of DC and tool vibration coupled electrolytic machining, The phenomenon that the machining current waveform is placed in front of the tool cathode vibration waveform is found, and the peak of the current waveform in the DC and tool vibration coupled electrolytic machining is proposed as the center. The misplacement precoupling strategy of symmetrical distributed pulse current opening angle. Through the contrast test between traditional and misplaced preposition method, the processing test of different opening angle range, It is proved that the precoupling strategy of pulse vibration misalignment is reasonable. (3) the experimental study of pulse vibration dislocation front coupling ECM is carried out. In order to further compare the rationality of traditional and misplaced front coupling methods, The limit machining speed, the minimum stable machining clearance and the machining leveling energy ratio of the traditional in-phase coupling and misalignment front coupling are carried out. The test results show that the misalignment leading coupling strategy is more reasonable. Taking typical aero-engine turbine blades as an example, the characteristics of low precision and small margin of blade die forging blank specimen are discussed. The blade specimen was successfully machined by staggered front coupled electrolytic machining (ECM) process. The specimen has good machining accuracy and surface quality.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TG662
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張明岐;張志金;黃明濤;;航空發(fā)動(dòng)機(jī)壓氣機(jī)整體葉盤(pán)電解加工技術(shù)[J];航空制造技術(shù);2016年21期
2 朱順康;劉嘉;朱荻;;發(fā)動(dòng)機(jī)葉片電解加工等入流角流場(chǎng)設(shè)計(jì)與試驗(yàn)研究[J];電加工與模具;2016年03期
3 朱永偉;邵健;蘇楠;云乃彰;;同步超聲振動(dòng)調(diào)制微細(xì)放電-電解加工技術(shù)[J];機(jī)械工程學(xué)報(bào);2014年01期
4 史先傳;丁端瑞;劉嘉;徐正揚(yáng);;電解加工中振動(dòng)與放電控制系統(tǒng)設(shè)計(jì)[J];機(jī)床與液壓;2012年15期
5 朱永偉;王占和;范仲俊;陶建松;張磊;;微細(xì)超聲復(fù)合電加工技術(shù)與應(yīng)用[J];機(jī)械工程學(xué)報(bào);2010年03期
6 王昆;朱荻;;基于線(xiàn)電極原位制作的微細(xì)電解線(xiàn)切割加工[J];光學(xué)精密工程;2009年11期
7 張明岐;傅軍英;;高溫合金整體葉盤(pán)精密振動(dòng)電解加工方法的應(yīng)用分析[J];航空制造技術(shù);2009年22期
8 朱永偉;徐家文;;復(fù)合平面擺動(dòng)展成電解加工整體構(gòu)件異形面的成形分析及應(yīng)用[J];機(jī)械工程學(xué)報(bào);2008年12期
9 朱永偉;王占和;范仲俊;;制作微結(jié)構(gòu)的超聲復(fù)合加工機(jī)理[J];宇航材料工藝;2008年05期
10 朱永偉;王占和;云乃彰;;超聲電解復(fù)合微細(xì)加工裝置與試驗(yàn)研究[J];機(jī)械科學(xué)與技術(shù);2008年08期
相關(guān)會(huì)議論文 前2條
1 彭帥;曲寧松;曾永彬;朱荻;李偉;于洽;;往復(fù)運(yùn)絲電解線(xiàn)切割基礎(chǔ)研究[A];第14屆全國(guó)特種加工學(xué)術(shù)會(huì)議論文集[C];2011年
2 范會(huì)玉;;整體渦輪盤(pán)雙級(jí)葉片電解加工提高葉片表面質(zhì)量的工藝研究[A];第13屆全國(guó)特種加工學(xué)術(shù)會(huì)議論文集[C];2009年
相關(guān)博士學(xué)位論文 前3條
1 徐正揚(yáng);發(fā)動(dòng)機(jī)葉片精密電解加工關(guān)鍵技術(shù)研究[D];南京航空航天大學(xué);2008年
2 王昆;微細(xì)電解線(xiàn)切割加工技術(shù)的基礎(chǔ)研究[D];南京航空航天大學(xué);2007年
3 徐惠宇;微細(xì)電解加工系統(tǒng)及其相關(guān)工藝的研究[D];南京航空航天大學(xué);2005年
,本文編號(hào):1629509
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1629509.html