TC11合金人造摩擦層的演變、作用及磨損機理研究
發(fā)布時間:2018-03-17 15:41
本文選題:TC11合金 切入點:納米添加劑 出處:《江蘇大學(xué)》2017年博士論文 論文類型:學(xué)位論文
【摘要】:鈦合金差的摩擦學(xué)性能限制了其在涉及到摩擦、磨損工況下的應(yīng)用,控制摩擦氧化物層的形成是改善鈦合金摩擦磨損性能的一種新的途徑。然而,目前對摩擦層的演變過程、作用及磨損機理等的研究尚不夠深入。本文通過在滑動界面上添加不同類型納米材料,人為制造出了一種雙層減摩抗磨摩擦層。研究了 TC11合金在不同載荷、納米材料添加量、滑動轉(zhuǎn)數(shù)條件下的摩擦磨損行為,測試和分析了摩擦層的形態(tài)、結(jié)構(gòu)及成分,探討了磨損轉(zhuǎn)變與磨損機理,探索了人造摩擦層的形成、破壞機理及二者之間的關(guān)系,闡述了人造摩擦層的作用機理和穩(wěn)定性,并通過雙滑動磨損實驗對人造摩擦層的可持續(xù)性作用進(jìn)行了驗證。此項研究為鈦合金的摩擦學(xué)設(shè)計和性能的改善、工程應(yīng)用以及磨損理論的研究提供了基礎(chǔ)數(shù)據(jù)和科學(xué)依據(jù),具有重要的理論意義和工程應(yīng)用價值。結(jié)果表明:TC11合金的摩擦磨損行為與添加劑類型及滑動、添加條件密切相關(guān)。無論何種載荷、添加量或轉(zhuǎn)數(shù),MLG均不能改善TC11合金的摩擦磨損性能。Fe_2O_3納米顆?纱偈沟洼d下的耐磨性得以提高,但減摩性并未同時得到改善。然而,Fe_2O_3和MLG的機械混合或復(fù)合材料添加劑可以同時提高TC11合金的耐磨性與減摩性。對于單獨的MLG或Fe_2O_3納米添加劑,除添加Fe_2O_3、低載條件外,均發(fā)生嚴(yán)重磨損,主要磨損機理為粘著磨損和磨粒磨損。而Fe_2O_3和MLG的機械混合物和復(fù)合材料添加劑加速了嚴(yán)重-輕微磨損轉(zhuǎn)變,促使發(fā)生轉(zhuǎn)變的臨界載荷和臨界轉(zhuǎn)數(shù)增大,且臨界添加量減小。隨添加劑中MLG含量增加,TC11合金總體上經(jīng)歷了嚴(yán)重-輕微-嚴(yán)重磨損雙重轉(zhuǎn)變。MLG和Fe_2O_3分別依靠吸附壓實和摩擦燒結(jié)形成單層人造摩擦層,MLG低的剪切力與Fe_2O_3高的硬度使得含MLG和含F(xiàn)e_2O_3的單層人造摩擦層分別具有良好的潤滑作用和承載能力,但單層摩擦層由于各自承載或潤滑能力的欠缺導(dǎo)致了差的穩(wěn)定性和可持續(xù)性。機械混合或復(fù)合材料中的Fe_2O_3和MLG依次經(jīng)歷燒結(jié)和吸附形成雙層人造摩擦層,且添加機械混合材料時的雙層摩擦層分層更明顯。雙層摩擦層綜合了 MLG和Fe_2O_3各自的優(yōu)勢性能,表現(xiàn)出潤滑和承載的協(xié)同保護(hù)作用,穩(wěn)定性和可持續(xù)性均顯著提高。研究發(fā)現(xiàn),添加富Fe_2O_3復(fù)合材料時的雙層人造摩擦層因Fe_2O_3含量高且分散而承載能力強,具有更好的穩(wěn)定性;添加富MLG機械混合材料時的雙層人造摩擦層由于MLG含量高且層數(shù)多而潤滑性能優(yōu)異,故可持續(xù)性更佳。雙滑動磨損實驗驗證了添加機械混合材料時的雙層人造摩擦層具有更強的可持續(xù)性。初步弄清了人造摩擦層的形成和破壞機理,基于構(gòu)建的人造摩擦層形成與破壞間的關(guān)系,摩擦層演變經(jīng)歷生長期、穩(wěn)定期和衰退期三個階段,分別對應(yīng)于VF/VD1、VF/VD≈1和VF/VD1。在不消耗基體材料且常規(guī)條件下,設(shè)計并制備出一種高穩(wěn)定性、高可持續(xù)性的雙層人造摩擦層,可以同時改善鈦合金的摩擦磨損性能,所對應(yīng)的最佳納米添加劑類型及比例分別為MLG/Fe_2O_3(1:4)和MLG+Fe_2O_3(2:1 )。
[Abstract]:The tribological properties of titanium alloy to limit its difference of friction in the condition of the application to wear, friction of the oxide layer formation control is a new way to improve the friction and wear properties of titanium alloy. However, the current of the friction layer evolution process, the study effect and abrasion mechanism is still not deep enough. Through adding different types of nano materials in sliding interface, artificially created a double anti-wear friction layer. TC11 alloy were studied under different loads, the addition of nano materials, the friction and wear behavior of the sliding speed conditions, test and analysis of friction layer morphology, composition and structure, discusses the transformation of wear and wear the mechanism on the formation of artificial friction layer, the relationship between the failure mechanism and the two, elaborated the mechanism and stability of artificial friction layer, and the double sliding wear experiments on artificial friction layer. Persistent effect was verified. The tribological design and performance of the study for the improvement of titanium alloy, provides basic data and scientific foundation for engineering application and Research on wear theory, it has important theoretical significance and engineering application value. The results show that the friction and wear behavior of TC11 alloy with additive type and sliding, add close related. No matter what the amount of load, or rpm, MLG can not improve the friction and wear properties of.Fe_2O_3 TC11 alloy nanoparticles can promote the wear resistance under low load can be improved, but also did not improve antifriction. However, mechanical mixing or composite additives Fe_2O_3 and MLG can improve the wear resistance and antifriction TC11 alloy for MLG or Fe_2O_3 nano additive alone, in addition to Fe_2O_3, the low load conditions, are serious wear, the main wear mechanism is adhesive wear and Abrasive wear. The mechanical mixture of Fe_2O_3 and MLG and the composite additive has accelerated the serious - mild wear change, prompted the change of the critical load and speed increases, and the critical amount decreases. With the content of MLG additive increased, TC11 alloy has experienced a severe and mild severe wear double shift and.MLG Fe_2O_3 are based on the adsorption of compaction and sintering forming a layer of artificial friction friction layer, shear force and Fe_2O_3 low MLG high hardness makes single artificial friction layer containing MLG and Fe_2O_3 respectively with good lubrication and bearing capacity, but the single friction layer due to the lack of their bearing or lubricating ability leads to poor stability and sustainable. Mechanical mixed or composite materials Fe_2O_3 and MLG had undergone sintering and adsorption to form a double-layer artificial friction layer, and the double friction mechanical mixing when adding materials Double layer is more obvious. The comprehensive advantages of friction layer properties of MLG and Fe_2O_3 respectively, and the bearing lubrication showed a synergistic protective effect, stability and sustainability are significantly improved. The study found that adding two-layer synthetic friction layer rich in Fe_2O_3 composite materials because of the high content of Fe_2O_3 and dispersed and the bearing capacity is strong, has better stability; add the double artificial friction layer MLG rich materials with mechanical mixing due to the high MLG content and more layers and excellent lubrication performance, so the sustainability is better. Double sliding wear experiments verify the sustainability of the two-layer synthetic material mechanical friction layer added when mixed with stronger. We got the formation and failure mechanism of artificial friction layer the construction of artificial, friction layer formation and destruction on the basis of the friction layer undergoes growth period, stable period and recession three stages, respectively, corresponding to VF/ VD1, VF/V D = 1 and VF/VD1. in the matrix material consumption and conventional conditions, design and fabrication of a high stability, double layer artificial friction high sustainability, friction and wear properties of titanium alloy can be improved at the same time, the best proportion of nano additive types and corresponding to the MLG/ Fe_2O_3 (1:4) and MLG+Fe_2O_3 (2:1).
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TG146.23
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 顧則鳴,黨鴻辛;磨損機理中的分層理論及其若干應(yīng)用[J];固體潤滑;1982年01期
2 謝恒星,張一清,李松仁,李定或;鋼球的應(yīng)用狀況與磨損機理[J];武漢化工學(xué)院學(xué)報;2002年01期
3 葉爾贊,黃傳輝;摩擦襯墊磨損機理的微觀分析[J];煤礦機械;1999年04期
4 夏立明,王興貴;N~+注入后磨損機理分析[J];物理測試;1995年03期
5 吳茵;陳建兵;周擁仔;龍春光;;Ekonol/G/MoS_2/POM復(fù)合材料的磨損機理研究[J];食品與機械;2007年02期
6 王中營;武文斌;曹憲周;;糧食顆粒對輸送管道的磨損機理分析及解決措施[J];糧食與飼料工業(yè);2013年10期
7 劉安民;沈航;KRUTH JP;;高速銑削時刀夾聯(lián)體振動特性影響后刀面磨損機理[J];機械工程學(xué)報;2008年04期
8 E.Klamecki;孫道h,
本文編號:1625380
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1625380.html
最近更新
教材專著