球頭銑刀銑削淬硬鋼模具銑削力及模具加工誤差研究
本文選題:淬硬鋼模具 切入點(diǎn):球頭銑刀 出處:《哈爾濱理工大學(xué)》2017年博士論文 論文類型:學(xué)位論文
【摘要】:隨著高速切削技術(shù)和硬切削技術(shù)的發(fā)展,具有高硬度、高韌性和高耐磨性的淬硬鋼模具加工實(shí)現(xiàn)了以銑代磨,并以高精度和高效率的優(yōu)勢(shì)迅速成為汽車覆蓋件模具加工的主要工藝方法。由于汽車覆蓋件模具具有結(jié)構(gòu)尺寸大、工作形面復(fù)雜、曲率變化頻繁、表面質(zhì)量和加工精度要求高等特點(diǎn),使模具制造企業(yè)對(duì)自由曲面模具切削過(guò)程的控制及加工精度的保證面臨很大的挑戰(zhàn)。在自由曲面淬硬鋼模具三軸球頭銑削過(guò)程中,切削力方向多變,工藝系統(tǒng)呈署弱剛性,易引起切削過(guò)程穩(wěn)定性下降,加工表面質(zhì)量和加工精度下降,刀具壽命降低等問(wèn)題。因此,研究自由曲面淬硬鋼模具球頭銑削過(guò)程的切削力、刀具變形、銑削穩(wěn)定性、加工誤差和補(bǔ)償,以滿足自由形面、高硬度、大尺寸模具的高精度高效率的生產(chǎn)需求,對(duì)推動(dòng)汽車淬硬鋼模具制造技術(shù)進(jìn)步,促進(jìn)高品質(zhì)自由形面模具加工技術(shù)的發(fā)展和應(yīng)用具有重要的現(xiàn)實(shí)意義。球頭銑削自由曲面淬硬鋼模具時(shí),曲面曲率特征和加工傾角多變使瞬態(tài)切削力處于不穩(wěn)定狀態(tài),多變載荷引起刀具變形和切削穩(wěn)定性下降,同時(shí),造成自由曲面的加工形貌和加工精度難以達(dá)到要求。本文針對(duì)自由曲面淬硬鋼模具的球頭銑削過(guò)程中存在的上述問(wèn)題,進(jìn)行球頭銑刀銑削淬硬鋼模具銑削力及模具加工誤差研究,主要內(nèi)容包括:針對(duì)曲面加工中前傾角、側(cè)偏角、行距方向曲率和進(jìn)給方向曲率引起銑削力方向和大小變化的問(wèn)題,首先表征自由曲面曲率特征及加工傾角,根據(jù)球頭銑刀切削刃幾何形狀,建立銑削過(guò)程中刀齒實(shí)際運(yùn)動(dòng)軌跡的三維擺線模型;基于三維擺線模型,考慮曲面加工前傾角、側(cè)偏角、行距方向曲率和進(jìn)給方向曲率,修正未變形切屑厚度模型,研究工件曲率和加工傾角對(duì)未變形切屑厚度的影響規(guī)律。建立考慮加工傾角和工件曲率的自由曲面瞬態(tài)銑削力模型,分析加工傾角和工件曲率對(duì)瞬態(tài)銑削力的影響規(guī)律。提出自由曲面瞬態(tài)銑削力預(yù)測(cè)方法,并進(jìn)行實(shí)驗(yàn)驗(yàn)證,為刀具偏擺分析和動(dòng)力學(xué)建模提供依據(jù);谧杂汕嫠矐B(tài)銑削力變化規(guī)律,采用有限元法分析球頭刀偏擺,獲得切削區(qū)部分切削刃變形分布規(guī)律;基于刀齒三維擺線運(yùn)動(dòng)軌跡,建立考慮切削刃不同位置變形的未變形切屑厚度模型,研究切削刃變形對(duì)未變形切屑厚度的影響規(guī)律。分析切削刃變形對(duì)刀工接觸區(qū)域的影響規(guī)律,建立考慮切削區(qū)變形的自由曲面銑削力預(yù)測(cè)模型,并通過(guò)實(shí)驗(yàn)驗(yàn)證,為加工誤差提供理論依據(jù)。自由曲面球頭銑削的未變形切削厚度沿切削刃不斷變化,基于刀齒三維擺線軌跡模型,描述相鄰刀齒在三維刀工接觸區(qū)前后表面形成的一對(duì)切屑厚度控制點(diǎn)。分析相鄰兩個(gè)刀齒分別經(jīng)過(guò)刀工接觸區(qū)前后表面控制點(diǎn)的時(shí)滯時(shí)間,建立變時(shí)滯時(shí)間的未變形切屑厚度模型。分析工件曲率及加工傾角對(duì)銑削時(shí)滯及再生作用下的動(dòng)態(tài)切屑厚度的影響規(guī)律,建立自由曲面銑削動(dòng)力學(xué)方程。采用全離散和數(shù)值解法相結(jié)合辦法分析小徑向切深的球頭銑削變時(shí)滯動(dòng)力學(xué)特性,預(yù)測(cè)自由曲面銑削穩(wěn)定域,分析加工傾角和曲率半徑對(duì)銑削穩(wěn)定域的影響規(guī)律。自由曲面的加工中通常存在編程誤差和加工誤差,對(duì)球頭銑刀銑削淬硬鋼模具時(shí)的讓刀誤差、殘留高度和插補(bǔ)誤差進(jìn)行分析,揭示自由曲面誤差分布特性。通過(guò)銑削自由曲面淬硬鋼模具讓刀誤差實(shí)驗(yàn)和加工表面形貌實(shí)驗(yàn),分別驗(yàn)證讓刀誤差及殘留高度預(yù)測(cè)模型。基于不同形面特征誤差分布特性,采用過(guò)程集成優(yōu)化方法,對(duì)曲面的不同切削區(qū)域有針對(duì)性的進(jìn)行補(bǔ)償。
[Abstract]:With the development of high speed cutting and hard cutting technology, with high hardness, hardened steel mold processing high toughness and high wear resistance is realized by milling instead of grinding, and with high accuracy and high efficiency advantages quickly became the main process of automotive panel die. Because of the large size of the automotive panel die work complex shape, curvature changes frequently, surface quality and machining precision higher characteristic, the mold manufacturing enterprises to control the free surface of mould cutting process and machining accuracy face great challenge. In the free surface hardened steel mold three axis milling process, the cutting force direction changing process system is Department of weak rigidity that is easy to cause the decrease of cutting process stability, decrease the surface quality and machining precision machining, reduce the tool life problem. Thus, the research on the free surface of hardened steel mold ball milling process The cutting force, cutting deformation, milling stability and machining error and compensation, in order to satisfy the free surface, high hardness, high precision and high efficiency of large size mold production needs, to push the car to the hardened mould manufacturing technology progress, promotion has important practical significance to the development and application of high quality free surface mold processing technology. Ball end milling of free form surface hardened steel mold, the curvature of the surface features and machining inclination angle changing makes the transient cutting force in an unstable state, and decrease the load, deformation and stability of cutting tool at the same time, resulting in processing morphology and machining accuracy of free surface is difficult to meet the requirements. The above problems this paper milling for free surface hardened steel die in the study of ball end milling of hardened steel mold milling force and die machining error, the main contents include: according to the anteversion angle of curved surfaces Sideslip angle, spacing, curvature and curvature direction feed direction caused by milling force magnitude and direction of change, the first characterization of free surface curvature features and machining inclination angle, according to ball end milling cutting edge geometry, establish milling cutter tooth actual motion trajectory of the 3D pendulum line model; 3D model based on Cycloidal surface machining, considering the anteversion sideslip angle, spacing, curvature direction and feed direction curvature correction, the undeformed chip thickness model, the influence of workpiece curvature and machining inclination angle of undeformed chip thickness. The establishment of the free surface instantaneous milling force model of machining inclination angle and curvature of the workpiece, analyze the effect of machining inclination angle and workpiece curvature on the transient milling force the proposed free surface transient milling force prediction method, and verified by the experiment, and provides the basis for the tool deflection analysis and dynamic modeling based on the instantaneous free surface. Variation of milling force, using finite element method analysis of ball cutter deflection, partial cutting deformation zone distribution; 3D tooth cycloidal trajectory based on a different cutting edge position deformation of the undeformed chip thickness model considering the influence of undeformed chip thickness deformation of the cutting edge. Analysis of the influencing factors on the deformation of the cutting edge of knife contact area, to establish the prediction model of milling force considering free surface deformation of the cutting area, and through experimental verification, provide a theoretical basis for the machining error. The undeformed chip thickness along the free surface of ball end milling cutting edge changing cutter tooth 3D cycloid trajectory model based on the description of the adjacent knife the tooth in the chip thickness control points before and after 3D tool workpiece contact zone formed on the surface of a delay time. Analysis of two adjacent cutter teeth respectively through the knife contact area before and after surface control points, A variable delay time of the undeformed chip thickness model. Analyze the influence of curvature and inclination of workpiece on dynamic milling time delay and regeneration under the effect of chip thickness, the establishment of a free surface milling dynamics equation. The numerical solution of discrete and combined analysis of the path to the ball end milling cutting depth variable delay dynamic characteristics to predict the milling stability domain of free-form surface, analyze the effect of machining inclination angle and radius of curvature on the milling stability domain. The programming error and machining error are free-form surface machining, the ball end milling of hardened steel mold when the cutter error analysis, residual height and interpolation error, reveal the error distribution characteristics of free surface. Through the milling of free form surface hardened steel mold cutter error test and surface topography experiments were validated and residual error of tool height prediction based on different models. The characteristics of the profile error distribution and the process integration optimization method are used to compensate the different cutting regions of the surface.
【學(xué)位授予單位】:哈爾濱理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG54
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉獻(xiàn)禮;姜彥翠;吳石;李茂月;岳彩旭;陳濤;;汽車覆蓋件用淬硬鋼模具銑削加工的研究進(jìn)展[J];機(jī)械工程學(xué)報(bào);2016年17期
2 吳石;李榮義;劉獻(xiàn)禮;姜彥翠;范夢(mèng)超;王廣越;;復(fù)雜曲面模具加工系統(tǒng)綜合剛度場(chǎng)建模與分析[J];機(jī)械工程學(xué)報(bào);2016年23期
3 陰艷超;吳磊;;基于過(guò)程集成優(yōu)化的復(fù)雜曲面數(shù)控銑削性能分析[J];計(jì)算機(jī)集成制造系統(tǒng);2016年04期
4 盧曉紅;王鳳晨;王華;王鑫鑫;司立坤;;銑削過(guò)程顫振穩(wěn)定性分析的研究進(jìn)展[J];振動(dòng)與沖擊;2016年01期
5 聶強(qiáng);黃凱;畢慶貞;朱利民;;微銑削中考慮刀具跳動(dòng)的瞬時(shí)切厚解析計(jì)算方法[J];機(jī)械工程學(xué)報(bào);2016年03期
6 趙凱;劉戰(zhàn)強(qiáng);;銑削力預(yù)測(cè)方法和影響因素綜述[J];機(jī)械科學(xué)與技術(shù);2015年08期
7 姜彥翠;劉獻(xiàn)禮;吳石;李茂月;李榮義;;考慮結(jié)合面和軸向力的主軸系統(tǒng)動(dòng)力學(xué)特性[J];機(jī)械工程學(xué)報(bào);2015年19期
8 劉獻(xiàn)禮;馬晶;岳彩旭;劉飛;仲昭楠;;汽車模具凸曲面精加工極限切削深度預(yù)測(cè)[J];機(jī)械工程學(xué)報(bào);2015年02期
9 李學(xué)斌;;基于等參數(shù)線法離散NURBS曲面的插補(bǔ)算法[J];自動(dòng)化技術(shù)與應(yīng)用;2014年07期
10 王文莉;黃祖廣;胡天亮;張承瑞;;NURBS自適應(yīng)實(shí)時(shí)插補(bǔ)算法的研究[J];制造技術(shù)與機(jī)床;2014年06期
相關(guān)博士學(xué)位論文 前5條
1 丁云鵬;面向汽車覆蓋件模具銑削工藝過(guò)程優(yōu)化研究[D];哈爾濱理工大學(xué);2016年
2 陳曉曉;基于加工過(guò)程建模的模具鋼多軸高速銑削表面完整性研究[D];山東大學(xué);2014年
3 張小儉;柔性結(jié)構(gòu)銑削時(shí)滯工藝系統(tǒng)的穩(wěn)定性理論與實(shí)驗(yàn)研究[D];華中科技大學(xué);2012年
4 曹清園;基于銑削力建模的復(fù)雜曲面加工誤差補(bǔ)償研究[D];山東大學(xué);2011年
5 魏兆成;球頭銑刀曲面加工的銑削力與讓刀誤差預(yù)報(bào)[D];大連理工大學(xué);2011年
相關(guān)碩士學(xué)位論文 前1條
1 翁祖昊;具有連續(xù)加加速度與誤差自適應(yīng)特性的高效柔性數(shù)控算法研究與設(shè)計(jì)[D];上海交通大學(xué);2015年
,本文編號(hào):1616417
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1616417.html