H68黃銅深孔殼體件多工位冷擠壓工藝設(shè)計(jì)及數(shù)值模擬
本文選題:深孔殼體件 切入點(diǎn):冷擠壓 出處:《重慶理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:傳統(tǒng)的機(jī)加工生產(chǎn)深孔殼體件工序多、材料利用率低、產(chǎn)品性能不足。多工位冷擠壓技術(shù)能有效的提高材料利用率,擠壓產(chǎn)生的加工硬化效應(yīng)能提高最終產(chǎn)品的性能。利用Deform-3D軟件對(duì)H68黃銅多工位冷擠壓的工藝及模具進(jìn)行數(shù)值模擬,能有效快速的分析材料成型數(shù)據(jù),如溫度、速度、應(yīng)變等,通過分析結(jié)果反作用于設(shè)計(jì),使工藝設(shè)計(jì)和模具設(shè)計(jì)得到優(yōu)化,以便用于大批量生產(chǎn)。本文就H68深孔殼體件多工位冷擠壓工藝設(shè)計(jì)及模具設(shè)計(jì)進(jìn)行了研究,首先預(yù)設(shè)計(jì)多種工藝方案,然后通過相關(guān)工藝?yán)碚撝R(shí)及Deform-3D數(shù)值模擬分析結(jié)果得出最終多工位加工工藝方案,并在有限元相關(guān)理論知識(shí)的背景下,對(duì)該多工位冷擠壓工藝及模具進(jìn)行了真實(shí)有效的數(shù)值模擬試驗(yàn),最后對(duì)多工位冷擠壓殼體件及模具進(jìn)行了生產(chǎn)試制,并通過各種檢驗(yàn)方式對(duì)最終工件相關(guān)參數(shù)進(jìn)行了檢驗(yàn),同時(shí)對(duì)數(shù)值模擬結(jié)果與試驗(yàn)結(jié)果進(jìn)行了比對(duì)。結(jié)果表明:1)通過各工序比較,最優(yōu)工序安排為:剪切下料→閉式鐓粗制坯→軟化退火、清洗→預(yù)成型中心孔→反擠沖孔→正擠縮徑→鐓底。2)潤(rùn)滑方式的選擇、軟化退火工藝的合理安排,既延長(zhǎng)了模具壽命、保證了深孔殼體件良好的表面質(zhì)量,也使深孔殼體件獲得了明顯的加工硬化效果。3)通過合理的工藝及模具設(shè)計(jì)、模具選材及熱處理、潤(rùn)滑等多種技術(shù)途徑有效地解決了反擠沖孔工序中細(xì)長(zhǎng)沖頭的斷裂和彎曲問題。4)通過Deform-3D有限元數(shù)值模擬結(jié)果分析,該深孔殼體件在多工位成形過程中溫度變化整體不大,金屬流動(dòng)平穩(wěn),無(wú)死區(qū)。應(yīng)力主要集中在上頂桿與下頂沖和坯料接觸的部位,局部區(qū)域部位會(huì)產(chǎn)生應(yīng)力集中,導(dǎo)致殘留應(yīng)力的出現(xiàn)。特別是反擠沖孔工序小沖頭直徑小,承受載荷大,下端有應(yīng)力集中,故該沖頭為最易折彎的模具。5)無(wú)論是成形過程,還是金屬流動(dòng),試驗(yàn)結(jié)果與模擬試驗(yàn)結(jié)果匹配度高、吻合性好、結(jié)果統(tǒng)一。證明該殼體件數(shù)值模擬結(jié)果可以指導(dǎo)該工件的生產(chǎn)。
[Abstract]:The traditional machining process for producing deep-hole shell parts has many processes, low material utilization ratio and insufficient product performance. Multi-station cold extrusion technology can effectively improve the material utilization ratio. The process and die of multi-station cold extrusion of H68 brass can be numerically simulated by Deform-3D software, which can analyze the forming data of materials such as temperature, speed, strain and so on effectively and quickly. The process design and die design are optimized for mass production through the reaction of the analysis results. In this paper, the multi-station cold extrusion process design and die design of H68 deep hole shell parts are studied. Firstly, several process schemes are pre-designed, and then the final multi-station machining process scheme is obtained through relevant process theory knowledge and Deform-3D numerical simulation results, and under the background of finite element related theoretical knowledge, The multi-station cold extrusion process and die are tested by real and effective numerical simulation. Finally, the multi-station cold extrusion shell parts and dies are produced and the relevant parameters of the final workpiece are tested by various inspection methods. At the same time, the numerical simulation results are compared with the experimental results. 鈫扖losed upsetting billet. 鈫扴oftening annealing cleaning. 鈫扨reforming center hole. 鈫扲everse extrusion punching. 鈫扨ositive squeezing diameter. 鈫扵he choice of lubrication mode and the reasonable arrangement of softening and annealing process not only prolong the life of die, but also guarantee the good surface quality of the shell parts with deep holes. It also makes the deep hole shell get obvious working-hardening effect. 3) through reasonable process and die design, die material selection and heat treatment, Lubrication and other technical approaches have effectively solved the fracture and bending problems of slender punches in reverse extrusion punching. 4) through the numerical simulation results of Deform-3D finite element analysis, the temperature of the deep hole shell in the process of multi-position forming has not changed much, as a whole, the temperature of the deep hole shell has not changed much in the process of multi-position forming. The stress is mainly concentrated in the part where the upper top rod is in contact with the bottom top impact and the blank, and the local area will produce stress concentration, which will lead to the appearance of residual stress, especially in the reverse extrusion process, the diameter of the punching head is small. Due to the large load and the stress concentration at the lower end, the punch is the most easily bending die. 5) whether it is the forming process or the metal flow, the test results match well with the simulated test results. It is proved that the numerical simulation results of the shell part can guide the production of the workpiece.
【學(xué)位授予單位】:重慶理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG379
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉亞男;張?zhí)?韓娟娟;張扣寶;陳良;王廣春;趙國(guó)群;;蓄能器外殼溫冷復(fù)合擠壓預(yù)成形設(shè)計(jì)[J];精密成形工程;2017年01期
2 李京;郭巨壽;康鳳;尹國(guó)華;張雪冬;于霞;;柴油機(jī)噴射系統(tǒng)泵體精密擠壓工藝[J];精密成形工程;2016年06期
3 賈璐;李永堂;李振曉;;基于ABAQUS的鑄態(tài)耐熱合金鋼熱擠壓成形數(shù)值模擬研究[J];精密成形工程;2016年05期
4 陳增奎;蔣清;周衛(wèi)衛(wèi);葛東生;馬廣超;;AZ31鎂合金薄壁管材擠壓技術(shù)研究[J];精密成形工程;2016年03期
5 莫戈;曾攀;;純鎳N6擠壓坯料的高溫變形行為及加工圖[J];精密成形工程;2016年03期
6 單德彬;徐杰;王春舉;郭斌;;塑性微成形技術(shù)研究進(jìn)展[J];中國(guó)材料進(jìn)展;2016年04期
7 姜翠紅;程俊;;金屬塑性成形的應(yīng)用現(xiàn)狀及發(fā)展趨勢(shì)[J];現(xiàn)代制造技術(shù)與裝備;2016年03期
8 王姝儼;夏華;秦梁杰;胡冬;朱雄;;方形孔軸套冷擠壓成形工藝研究及數(shù)值模擬分析[J];精密成形工程;2016年02期
9 韓海波;;鋁型材精密擠壓工藝控制和模具設(shè)計(jì)分析[J];精密成形工程;2016年02期
10 姜春茂;劉海燕;付偉;王競(jìng)宇;方嘵玲;邱志斌;董志修;;彈體毛坯熱收口成形工藝研究[J];精密成形工程;2016年01期
相關(guān)博士學(xué)位論文 前3條
1 肖志玲;多工位高速冷鐓成形機(jī)理及其設(shè)備結(jié)構(gòu)優(yōu)化研究[D];機(jī)械科學(xué)研究總院;2015年
2 宋金鵬;硼化鈦基復(fù)相陶瓷刀具及其失效機(jī)理研究[D];山東大學(xué);2012年
3 王錦霞;不可逆過程熱力學(xué)在冶金中的應(yīng)用研究[D];東北大學(xué);2006年
相關(guān)碩士學(xué)位論文 前7條
1 洪祥挺;QA17銅合金微型平面彈簧冷擠壓成形工藝及性能研究[D];南京理工大學(xué);2015年
2 寧媛;分子動(dòng)力學(xué)中晶體位錯(cuò)的三維可視化研究與實(shí)現(xiàn)[D];西安建筑科技大學(xué);2014年
3 呂濰威;變形方式對(duì)銅及銅合金力學(xué)性能的影響[D];昆明理工大學(xué);2014年
4 王霆;大型復(fù)雜多工位級(jí)進(jìn)沖壓成形關(guān)鍵技術(shù)研究[D];華南理工大學(xué);2013年
5 傘星源;層錯(cuò)能對(duì)銅及銅合金強(qiáng)塑性影響的研究[D];昆明理工大學(xué);2011年
6 谷霞;冷擠壓成型雙金屬軸套成型工藝與性能研究[D];太原科技大學(xué);2011年
7 高寬;薄板成型過程中的摩擦系數(shù)反求技術(shù)研究[D];湖南大學(xué);2006年
,本文編號(hào):1612384
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1612384.html