LF2M鋁合金T型三通管內(nèi)高壓成形影響因素研究
發(fā)布時(shí)間:2018-03-11 20:33
本文選題:T型三通管 切入點(diǎn):內(nèi)高壓成形 出處:《南昌航空大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:T型三通管作為空心結(jié)構(gòu)件里最具典型的零件,近年來國內(nèi)外學(xué)者對(duì)T型三通管從數(shù)值模擬到成形實(shí)驗(yàn)進(jìn)行了大量研究。本文采用數(shù)值模擬結(jié)合實(shí)驗(yàn),針對(duì)影響LF2M鋁合金T型三通管內(nèi)高壓成形的主要3個(gè)因素進(jìn)行研究,分別是進(jìn)給量與內(nèi)壓、過渡圓角、摩擦與潤(rùn)滑。主要內(nèi)容如下:(1)詳細(xì)的介紹了T型三通管成形工藝過程及成形原理,影響T型三通管內(nèi)高壓成形的3個(gè)主要的因素分別為內(nèi)壓與進(jìn)給量、過渡圓角及摩擦與潤(rùn)滑,對(duì)這3個(gè)主要因素進(jìn)行了詳細(xì)的介紹,并介紹了T型三通管內(nèi)高壓成形不同摩擦類型產(chǎn)生的3個(gè)區(qū)域,分別為導(dǎo)向區(qū)、過渡區(qū)及成長(zhǎng)區(qū)。介紹CAE理論分析,并對(duì)有限元軟件DYNAFORM進(jìn)行了簡(jiǎn)單介紹。(2)建立了T型三通管的有限元模型,并采用1/4模型分析內(nèi)壓和進(jìn)給量、過渡圓角及摩擦和潤(rùn)滑對(duì)成形的影響。模擬結(jié)果顯示:在最大內(nèi)壓P=20MPa、進(jìn)給量S=30mm、μ=0.06、過渡圓角R=4mm時(shí)得出的模擬結(jié)果最好。分析模擬結(jié)果得出:內(nèi)壓及摩擦是影響最小壁厚的關(guān)鍵因素,過大的過渡圓角需要添加背壓力才能成形符合要求的零件。并分析了T三管高壓成形過程中材料流動(dòng)的趨勢(shì)和成形缺陷。(3)針對(duì)傳統(tǒng)潤(rùn)滑方式在T型三通管內(nèi)高壓成形上的不可行,提出新的潤(rùn)滑方式—基于局部摩擦控制的T型三通管內(nèi)高壓成形法。該方法通過分析T型三通管內(nèi)高成形不同區(qū)域產(chǎn)生不同摩擦方式進(jìn)行劃分,分析不同區(qū)域潤(rùn)滑條件對(duì)成形的影響,采取不同的潤(rùn)滑方式。在該方式的基礎(chǔ)之上,完成三通管內(nèi)高壓成形,發(fā)現(xiàn)在區(qū)域1進(jìn)行潤(rùn)滑就能成形出符合要求的零件。(4)介紹了三通管內(nèi)高壓成形整個(gè)過程,從實(shí)驗(yàn)?zāi)康、?shí)驗(yàn)設(shè)備、安裝調(diào)試,到潤(rùn)滑劑選擇、管坯下料,最后完成實(shí)驗(yàn)。通過實(shí)驗(yàn)結(jié)合數(shù)值模擬,分析內(nèi)壓與進(jìn)給量、過渡圓角對(duì)成形質(zhì)量的影響;在關(guān)鍵部位取點(diǎn),觀測(cè)在成形過程中壁厚的變化規(guī)律;在零件上等距離取點(diǎn),比較模擬結(jié)果壁厚與實(shí)驗(yàn)結(jié)果壁厚分布規(guī)律,得出:支管頂部壁厚最小,在成形過程中逐漸減薄;直管底部壁厚最大,在成形過程中逐漸增加;過渡圓角壁厚在成形初期、中期逐漸增加,在成形后期、整形階段逐漸減少。
[Abstract]:T-tube is the most typical part in hollow structure. In recent years, many scholars at home and abroad have done a lot of research on T-tube from numerical simulation to forming experiment. In this paper, the main factors affecting the high pressure forming of LF2M aluminum alloy T-way tube are studied, which are feed rate, internal pressure, transition angle, etc. Friction and Lubrication. The main contents are as follows: (1) the forming process and forming principle of T-type three-way tube are introduced in detail. The three main factors that affect the high-pressure forming of T-type three-way pipe are internal pressure and feed, transition angle, friction and lubrication, respectively. The three main factors are introduced in detail, and the three regions produced by different friction types in high pressure forming of T-shaped three-way pipe are introduced, which are the guide zone, the transition zone and the growth zone. The CAE theory analysis is introduced. The finite element model of T-type three-way tube is established by introducing the finite element software DYNAFORM. The 1/4 model is used to analyze the internal pressure and feed rate. The effects of transition angle, friction and lubrication on the forming. The simulation results show that the simulation results are the best when the maximum internal pressure is 20 MPA, the feed rate is 30 mm, 渭 n is 0.06 mm, and the transition angle is 4 mm. The results show that the internal pressure and friction are the key factors affecting the minimum wall thickness. It is necessary to add back pressure in order to form the parts which meet the requirements. The trend of material flow and forming defect during high pressure forming of T-tube are analyzed, and the high pressure of traditional lubrication mode in T-tube is analyzed. Forming is not feasible, A new lubrication method based on local friction control is proposed in this paper. This paper analyzes the influence of lubrication conditions in different regions on forming, and adopts different lubrication methods. On the basis of this way, the high pressure forming of three-way pipe is completed. It is found that lubrication in area 1 can produce parts that meet the requirements.) the whole process of high pressure forming in three-way pipe is introduced, from experimental purpose, experimental equipment, installation and debugging, to lubricant selection, tube blanking, Finally, the experiment is completed. Through the experiment and numerical simulation, the influence of internal pressure and feed rate, transition angle on forming quality is analyzed, and the variation of wall thickness in the process of forming is observed by taking points at the key position, and at the same distance on the parts. By comparing the distribution of the wall thickness between the simulation results and the experimental results, it is concluded that the top wall thickness of the branch pipe is the smallest, the thickness of the bottom wall of the straight pipe decreases gradually during the forming process, the thickness of the transition corner wall increases gradually during the forming process, and the thickness of the transition corner wall is at the beginning of the forming process. The middle stage gradually increased, and in the later stage of shaping, the plastic stage gradually decreased.
【學(xué)位授予單位】:南昌航空大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG39;U466
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 魏龍;張鵬高;劉其和;金良;房桂芳;;接觸式機(jī)械密封端面摩擦系數(shù)影響因素分析與試驗(yàn)[J];摩擦學(xué)學(xué)報(bào);2016年03期
2 趙紅娜;張凱;;低熔點(diǎn)合金在異形孔凹模加工中的應(yīng)用[J];科技與企業(yè);2015年16期
3 楊程;張敏娜;湯丹妮;張U,
本文編號(hào):1599787
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1599787.html
最近更新
教材專著