生物活性涂層包覆鎂合金的制備與性能研究
本文關(guān)鍵詞: 鎂合金 生物活性涂層 微波 耐蝕性能 細(xì)胞相容性 出處:《天津大學(xué)》2016年博士論文 論文類型:學(xué)位論文
【摘要】:鎂及鎂合金具有良好的生物相容性和力學(xué)相容性,是很有潛力的一類可降解植入材料。然而,鎂及鎂合金在組織體液中降解過(guò)快,限制了其臨床應(yīng)用。生物活性涂層表面改性是提高鎂及鎂合金耐蝕性能的有效方法。理想的生物活性涂層需具備一定的致密度、厚度與礦化能力,同時(shí),還應(yīng)具備一定的粘附強(qiáng)度,減緩保護(hù)涂層的剝落。因此,在鎂及鎂合金表面制備具有上述性能的生物活性涂層,有望獲得具有良好綜合性能的骨修復(fù)材料。采用溶膠凝膠-浸漬提拉法結(jié)合熱處理以及軸向加壓,在鎂合金(AZ31)表面制備了45S5涂層。熱處理和軸向加壓可以調(diào)節(jié)涂層的致密度和界面殘余應(yīng)力。經(jīng)400°C熱處理和4 MPa軸向加壓得到的涂層具有較高的致密度,涂層與鎂合金界面沒(méi)有明顯缺陷,涂層的粘附強(qiáng)度為25.8±2.6 MPa。隨著在SBF(模擬體液)中浸泡時(shí)間的延長(zhǎng),涂層表面形成了顆粒堆積結(jié)構(gòu)的礦化層,浸泡17天之后,鎂合金的失重為8.9±0.7 mg/cm2。采用微波液相化學(xué)法僅需10 min在鎂合金表面制備了硅摻雜羥基磷灰石雙層涂層:表層為絮狀HA(羥基磷灰石),底層為長(zhǎng)片狀HA,涂層的厚度為?10.7μm。涂層的粘附強(qiáng)度為6.7±0.7 MPa。SBF浸泡實(shí)驗(yàn)結(jié)果表明:長(zhǎng)片狀HA為鎂合金提供了初期保護(hù)作用;絮狀HA具有優(yōu)異的礦化能力,形成的礦化層為鎂合金提供了長(zhǎng)期保護(hù)作用,浸泡24天之后,鎂合金的失重為5.4±0.4 mg/cm2。涂層具有較高的細(xì)胞活性,上調(diào)了I型膠原蛋白和骨鈣蛋白的表達(dá)。采用微波液相化學(xué)法僅需10 min在鎂合金表面制備了氟摻雜羥基磷灰石雙層涂層:表層為直徑35 nm至45 nm的晶須狀HA,底層主要為直徑70 nm至80 nm的晶須狀HA。涂層具有較低的溶解性和優(yōu)異的礦化能力,形成的礦化層為鎂合金提供了長(zhǎng)期保護(hù)作用,浸泡24天之后,鎂合金的失重為4.0±0.3 mg/cm2。晶須狀HA構(gòu)成的分級(jí)納米-微米結(jié)構(gòu)提高了涂層的表面生物活性,顯著上調(diào)了MC3T3-E1成骨細(xì)胞主要分化標(biāo)記物的表達(dá),增強(qiáng)了成骨細(xì)胞的分化。氟摻雜羥基磷灰石涂層對(duì)鎂合金提供長(zhǎng)期保護(hù)作用,并改善了細(xì)胞相容性,有望作為可降解鎂及鎂合金的保護(hù)涂層而使用。
[Abstract]:Magnesium and magnesium alloys have good biocompatibility and mechanical compatibility and are potential biodegradable implants. The surface modification of bioactive coating is an effective method to improve the corrosion resistance of magnesium and magnesium alloys. The ideal bioactive coating should have a certain density, thickness and mineralization ability, at the same time, There should also be a certain adhesion strength to slow down the spalling of protective coatings. Therefore, bioactive coatings with the above properties should be prepared on magnesium and magnesium alloys. It is expected that the bone repair materials with good comprehensive properties can be obtained. The sol-gel dipping and drawing method combined with heat treatment and axial compression are used. 45S5 coating was prepared on the surface of magnesium alloy AZ31. The density and interface residual stress of the coating can be adjusted by heat treatment and axial compression. The coating obtained by heat treatment at 400 擄C and axial pressure by 4 MPa has high density. There was no obvious defect in the interface between the coating and magnesium alloy, and the adhesion strength of the coating was 25.8 鹵2.6 MPA. With the prolongation of soaking time in SBF (simulated body fluid), a mineralized layer with granular stacking structure was formed on the surface of the coating, which was soaked for 17 days. The weight loss of magnesium alloy was 8.9 鹵0.7 mg / cm ~ 2. Si-doped hydroxyapatite double layer coating was prepared on magnesium alloy surface by microwave liquid chemical method for only 10 min. The adhesion strength of the coating was 6.7 鹵0.7 MPa.SBF. The results showed that the long sheet HA provided initial protection for magnesium alloy, the flocculent HA had excellent mineralization ability, and the mineralized layer provided long-term protection for magnesium alloy. After immersion for 24 days, the weight loss of magnesium alloy was 5.4 鹵0.4 mg / cm ~ 2. The expression of type I collagen and osteocalcin was upregulated. Fluorine-doped hydroxyapatite bilayer coating was prepared on magnesium alloy surface by microwave liquid phase chemical method for only 10 min. The surface layer was whisker HA with diameter from 35 nm to 45 nm. The coating has low solubility and excellent mineralizing ability. The mineralized layer provided long-term protection for magnesium alloy. After immersion for 24 days, the weight loss of magnesium alloy was 4.0 鹵0.3 mg / cm ~ 2.The graded nano-micron structure of whisker HA enhanced the surface bioactivity of the coating. The expression of major differentiation markers of MC3T3-E1 osteoblasts was up-regulated, and the differentiation of osteoblasts was enhanced. Fluorine-doped hydroxyapatite coating provided long-term protection to magnesium alloys and improved the cytocompatibility of magnesium alloys. It is expected to be used as a protective coating for degradable magnesium and magnesium alloys.
【學(xué)位授予單位】:天津大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TG178
【相似文獻(xiàn)】
相關(guān)期刊論文 前6條
1 杜賢昌;郭淑蘭;董文;徐學(xué)東;;AZ31B鎂合金A-TIG單一活性劑的設(shè)計(jì)與研究[J];熱加工工藝;2014年09期
2 杜九汪;王強(qiáng);;AZ80鎂合金帶內(nèi)筋薄壁殼體擠壓新方法[J];輕合金加工技術(shù);2014年05期
3 劉蒙恩;白莉;袁苗達(dá);樊艷麗;;AZ31鎂合金/AgCu合金/5083鋁合金TLP擴(kuò)散焊研究[J];熱加工工藝;2014年09期
4 孫彩玲;楊森;王明潤(rùn);王三軍;王曉龍;;化學(xué)仿生法制備生物活性涂層的研究現(xiàn)狀[J];材料導(dǎo)報(bào);2009年S1期
5 施秋萍;趙玉濤;戴起勛;林東洋;;鈦合金表面涂覆生物活性涂層的制備技術(shù)及進(jìn)展[J];真空;2006年06期
6 熊信柏,李賀軍,黃劍鋒,孫國(guó)嶺,黃敏;鈦基金屬表面生物活性改性研究進(jìn)展[J];稀有金屬快報(bào);2004年03期
相關(guān)會(huì)議論文 前1條
1 高勃;關(guān)泰紅;呂曉衛(wèi);胡江;林鑫;;激光快速成形技術(shù)制備梯度生物活性涂層及其理化和力學(xué)性能研究[A];第六次全國(guó)口腔修復(fù)學(xué)學(xué)術(shù)會(huì)議論文摘要匯編[C];2009年
相關(guān)博士學(xué)位論文 前2條
1 申P(guān)r伯;生物活性涂層包覆鎂合金的制備與性能研究[D];天津大學(xué);2016年
2 高蕊;鎂合金表面超疏水膜層構(gòu)筑及其防腐性能研究[D];哈爾濱工程大學(xué);2014年
相關(guān)碩士學(xué)位論文 前2條
1 張敏;鎂合金表面植酸/羥基磷灰石生物活性涂層的制備及性能研究[D];天津大學(xué);2016年
2 劉耿;新型全降解鎂合金氣管支架的制備及性能評(píng)價(jià)[D];鄭州大學(xué);2017年
,本文編號(hào):1555075
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1555075.html