金屬微納結(jié)構(gòu)中的光熱效應(yīng)及其相關(guān)應(yīng)用
發(fā)布時間:2018-02-23 16:37
本文關(guān)鍵詞: 表面等離激元 金屬納米結(jié)構(gòu) 光熱效應(yīng) 微納制備工藝 激光光致前向轉(zhuǎn)移 光熱調(diào)制器件 出處:《浙江大學(xué)》2016年博士論文 論文類型:學(xué)位論文
【摘要】:表面等離激元(SPP)由于具有近場光學(xué)增強與亞波長局域的特點,在光電集成、生物醫(yī)療、信息存儲、超高分辨率成像等領(lǐng)域具有巨大的應(yīng)用前景。光照射在金屬納米結(jié)構(gòu)上,會激發(fā)表面局域增強的SPP光場。由于金屬固有的對于光場的損耗性質(zhì),光能在金屬納米結(jié)構(gòu)表面會轉(zhuǎn)化熱能,產(chǎn)生強烈的光熱效應(yīng)。金屬納米結(jié)構(gòu)中的光熱效應(yīng)具有眾多應(yīng)用,本論文主要討論了基于該光熱效應(yīng)實現(xiàn)金屬納米顆粒形變/轉(zhuǎn)移及光熱硅光調(diào)制器件的應(yīng)用。本論文簡要介紹了對于金屬納米結(jié)構(gòu)中光熱效應(yīng)的理論基礎(chǔ),包括對入射光的散射/吸收、光熱效應(yīng)以及熱傳導(dǎo)過程;谶@些理論,可采用基于有限元方法的數(shù)值計算軟件進(jìn)行金屬納米結(jié)構(gòu)在光的激發(fā)下產(chǎn)生光熱效應(yīng)過程的仿真,有助于對納米結(jié)構(gòu)進(jìn)行設(shè)計優(yōu)化及對實驗現(xiàn)象進(jìn)行理論解釋。微納制備工藝是納米光子學(xué)領(lǐng)域的重要部分。通過理論和仿真設(shè)計的結(jié)構(gòu)需要通過實際的制備工藝變成現(xiàn)實。本論文簡要討論了人工超材料光吸收器與基于光熱效應(yīng)的光熱硅光開關(guān)制備過程,采用的工藝主要包括電子束曝光、電子束/熱蒸發(fā)沉積、感應(yīng)耦合等離子刻蝕等。同時介紹了相應(yīng)的用于對納米結(jié)構(gòu)進(jìn)行光學(xué)性能表征的實驗系統(tǒng)。激光光致前向轉(zhuǎn)移(LIFT)是基于金屬中的光熱效應(yīng)實現(xiàn)金屬納米結(jié)構(gòu)轉(zhuǎn)移/制備的方法。人工超材料光吸收器對于特定波長入射光具有接近100%的吸收率,進(jìn)而在結(jié)構(gòu)中產(chǎn)生強烈的光熱效應(yīng)。利用這種高效光熱效應(yīng),可進(jìn)一步改進(jìn)LIFT,大大降低對光源的需求,僅使用低工作功率(能量密度35 mJ/cm2)的納秒激光即可實現(xiàn)單次照射實現(xiàn)大量的納米顆粒轉(zhuǎn)移。相北于化學(xué)生長方法,轉(zhuǎn)移的金屬納米顆粒為單晶結(jié)構(gòu),表面沒有化學(xué)殘留。利用硅波導(dǎo)中的光熱非線性效應(yīng)可實現(xiàn)光熱調(diào)制器件。將金屬-介質(zhì)層-金屬結(jié)構(gòu)的光吸收器集成到馬赫·曾德爾干涉器上,利用光吸收器受到泵浦光激發(fā)產(chǎn)生的高效光熱效應(yīng),對硅波導(dǎo)加熱。通過改變泵浦光功率可實現(xiàn)器件輸出信號光功率的調(diào)制,相比于傳統(tǒng)光熱調(diào)制器件,該方式實現(xiàn)了全光無接觸式調(diào)制,無需制備額外的電接觸,使得器件集成度更高(30μm×60 μm)?偠灾,本論文討論了金屬納米結(jié)構(gòu)中光熱效應(yīng)的理論研究與實驗研究方法,提出了兩種基于該光熱效應(yīng)的應(yīng)用,有望應(yīng)用于納米結(jié)構(gòu)制備及光電互聯(lián)集成電路領(lǐng)域中。
[Abstract]:Due to the characteristics of near-field optical enhancement and sub-wavelength localization, SPPs have great application prospects in the fields of optoelectronic integration, biomedicine, information storage, ultra-high resolution imaging and so on. Because of the inherent loss of light field of metal, light energy can convert heat energy on the surface of metal nanostructure and produce strong photothermal effect. The photothermal effect of metal nanostructure has many applications. This paper mainly discusses the application of the photothermal effect to the deformation / transfer of metal nanoparticles and the photothermal silicon-photomodulation device, and briefly introduces the theoretical basis of photothermal effect in metal nanostructures. Based on these theories, the numerical calculation software based on finite element method can be used to simulate the photothermal effect of metal nanostructures excited by light. It is helpful to optimize the design of nanostructures and explain the experimental phenomena theoretically. The preparation process is an important part in the field of nano-photonics. The structures designed by theory and simulation need to be prepared by practical technology. In this paper, the fabrication process of artificial supermaterial optical absorber and photothermal silicon optical switch based on photothermal effect is briefly discussed. The processes used include electron beam exposure, electron beam / thermal evaporation deposition, Inductively coupled plasma etching and so on. At the same time, the corresponding experimental system used to characterize the optical properties of nanostructures is introduced. The laser photoinduced forward transfer (LIFT) is based on the photothermal effect in metal to realize the transfer of metal nanostructures. Artificial supermaterial absorbers have absorptivity of close to 100% for incident light at specific wavelengths, By using this kind of high efficiency photothermal effect, LIFT can be further improved, and the demand for light source can be greatly reduced. The nanosecond laser with a low working power (energy density of 35mJ / cm ~ 2) can realize a large amount of nanocrystalline particle transfer by single irradiation. There is no chemical residue on the surface. The photothermal modulation device can be realized by using the photothermal nonlinear effect in the silicon waveguide. The optical absorber with metal-dielectric layer metal structure is integrated into the Mach Zehnder interferometer. The silicon waveguide is heated by the high efficiency photothermal effect of the optical absorber excited by the pump light. The modulation of the output signal optical power of the device can be realized by changing the pump light power, compared with the traditional photothermal modulation device. This method realizes all-optical contactless modulation without additional electrical contact, which makes the device more integrated by 30 渭 m 脳 60 渭 m. In a word, the theoretical and experimental research methods of photothermal effect in metal nanostructures are discussed in this paper. Two applications based on the photothermal effect are proposed, which are expected to be used in nanostructure fabrication and optoelectronic interconnection integrated circuits.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TB383.1;TG111
【相似文獻(xiàn)】
相關(guān)期刊論文 前1條
1 ;美容問答[J];家庭醫(yī)藥.快樂養(yǎng)生;2010年06期
相關(guān)會議論文 前1條
1 李新宇;孫長森;;利用光熱效應(yīng)確定光纖光鑷焦點的研究[A];中國光學(xué)學(xué)會2011年學(xué)術(shù)大會摘要集[C];2011年
相關(guān)博士學(xué)位論文 前2條
1 龔翰墨;金屬微納結(jié)構(gòu)中的光熱效應(yīng)及其相關(guān)應(yīng)用[D];浙江大學(xué);2016年
2 沈劍峰;基于光熱效應(yīng)的熱波成像檢測系統(tǒng)及其應(yīng)用的研究[D];浙江大學(xué);2005年
相關(guān)碩士學(xué)位論文 前3條
1 郭立志;激光刺激生物細(xì)胞的光熱效應(yīng)研究[D];大連理工大學(xué);2012年
2 楊林;生物組織中光傳輸特性及光熱效應(yīng)研究[D];湖南師范大學(xué);2007年
3 韓韋;生物分子組織光熱相關(guān)性分析[D];長春理工大學(xué);2009年
,本文編號:1526861
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1526861.html
最近更新
教材專著