直傘齒輪滾軋成形工藝的數(shù)值模擬研究
本文關(guān)鍵詞: 錐齒輪 滾軋成形 突耳缺陷 多道次 數(shù)值模擬 出處:《吉林大學(xué)》2016年碩士論文 論文類型:學(xué)位論文
【摘要】:齒輪是一種很重要的回轉(zhuǎn)類傳動(dòng)零件,實(shí)現(xiàn)近距離軸之間動(dòng)力的傳動(dòng),具有安裝結(jié)構(gòu)緊湊、動(dòng)力傳遞過程安全可靠、服役壽命長(zhǎng)、傳動(dòng)效率高、噪音小、傳動(dòng)比精確且可變范圍大等優(yōu)點(diǎn),在機(jī)械傳動(dòng)領(lǐng)域得到普遍的應(yīng)用。隨著機(jī)械行業(yè)的不斷發(fā)展,對(duì)齒輪質(zhì)量的要求不斷提高,消除齒輪缺陷,提高齒輪質(zhì)量成為齒輪塑性加工的重要發(fā)展方向之一。錐齒輪滾軋成形過程中產(chǎn)生突耳缺陷,成形結(jié)束后在齒頂區(qū)形成折疊缺陷,導(dǎo)致錐齒輪無法使用,找出突耳缺陷的產(chǎn)生原因,設(shè)計(jì)出消除突耳缺陷的滾軋成形方法十分必要。目前有關(guān)錐齒輪滾軋成形中突耳缺陷消除方法的研究報(bào)道尚未查到,為了消除錐齒輪滾軋過程中出現(xiàn)的突耳缺陷,獲得齒形無缺陷的錐齒輪,本文對(duì)直齒錐齒輪滾軋成形工藝進(jìn)行了研究,通過UG建立齒輪模型,使用有限元分析軟件DEFORM對(duì)錐齒輪滾軋成形工藝進(jìn)行數(shù)值模擬。分析了錐齒輪滾軋過程中齒形左右兩側(cè)突耳的形成過程,提出了突耳缺陷的形成機(jī)理。研究了摩擦剪切因子、滾軋輪進(jìn)給速度、滾軋輪轉(zhuǎn)速和滾軋輪齒頂圓角對(duì)突耳缺陷形成的影響規(guī)律,并根據(jù)突耳的形成機(jī)理,設(shè)計(jì)出了能夠消除突耳缺陷的錐齒輪多道次滾軋成形工藝,得出主要研究結(jié)果如下:1.錐齒輪滾軋成形過程中,坯體與滾軋輪輪齒的接觸區(qū)不斷改變,坯體右側(cè)齒廓受到由坯體齒根向齒頂方向的變形力,坯體左側(cè)齒廓受到由坯體齒頂向齒根方向的變形力。坯體變形過程中,齒形左右兩側(cè)齒廓表層金屬流動(dòng)趨勢(shì)大于內(nèi)部,形變差的存在導(dǎo)致了突耳缺陷的形成。坯體齒形右側(cè)齒廓金屬流動(dòng)層厚度大于左側(cè)齒廓,是右側(cè)突耳高度大于左側(cè)突耳高度的主要原因。2.摩擦剪切因子增加,右側(cè)突耳高度增大,最大增加值為0.51mm,左側(cè)突耳高度無明顯變化規(guī)律;滾軋輪進(jìn)給速度增加,右側(cè)突耳高度增大,最大增加值為0.48mm,左側(cè)突耳高度減小,最大減小值為0.25mm;滾軋輪轉(zhuǎn)速增加,右側(cè)突耳高度減小,最大減小值為0.48mm,左側(cè)突耳高度增加,最大增加值為0.26mm;滾軋輪齒頂圓角半徑變化時(shí),左右兩側(cè)突耳高度均沒有明顯變化規(guī)律。3.基于突耳缺陷的形成機(jī)理,提出了先進(jìn)給、后旋轉(zhuǎn)的錐齒輪多道次滾軋成形工藝,并通過曲線標(biāo)定法確定每道次滾軋輪的預(yù)進(jìn)給量,第一道次至第四道次分別為2.1mm、3.6mm、5.2mm和6.9mm。多道次滾軋成形時(shí),坯體齒形兩側(cè)金屬流動(dòng)趨勢(shì)大于內(nèi)部,多道次滾軋輪的齒根有效的抑制了金屬不均勻變形,限制了突耳缺陷的形成。多道次滾軋輪的預(yù)進(jìn)給量過小時(shí),突耳缺陷得不到有效抑制;預(yù)進(jìn)給量過大時(shí),齒形金屬溢出在坯體齒根處形成折疊缺陷。
[Abstract]:Gear is a kind of very important rotary transmission parts. It has compact installation structure, safe and reliable power transfer process, long service life, high transmission efficiency and low noise. With the development of mechanical industry, the requirement of gear quality has been improved, and the defect of gear has been eliminated because of the advantages of accurate transmission ratio and wide variable range, and it has been widely used in the field of mechanical transmission. Improving gear quality has become one of the important development directions of gear plastic machining. Bevel gear has ear breaking defect in rolling forming process and folding defect in the top of tooth after forming, which leads to bevel gear can not be used. It is necessary to find out the causes of ear defects and to design a rolling forming method to eliminate them. At present, the research on the methods of eliminating ear defects in bevel gear rolling has not been reported. In order to eliminate the defect of bevel gear in rolling process and obtain the bevel gear with no tooth shape, the forming process of straight bevel gear is studied in this paper, and the gear model is established by UG. The forming process of bevel gear rolling was simulated by finite element analysis software DEFORM. The influence of friction shear factor, feed speed of rolling wheel, rotational speed of rolling wheel and round angle of tooth top of rolling wheel on the formation of ear burst defect was studied. The multi-pass rolling forming process of bevel gear is designed to eliminate the defect of bevel gear. The main results are as follows: 1. During the rolling forming process of bevel gear, the contact zone between the billet and the gear tooth changes continuously. The tooth profile on the right side of the billet is deformed from the root of the billet to the top of the tooth, and the tooth profile on the left side of the billet is deformed from the top of the tooth to the root of the tooth. The surface metal flow trend of the tooth profile on the left and right sides is larger than that of the inner surface, and the deformation difference leads to the formation of the defect of the ear protruding. The thickness of the metal flowing layer on the right side of the tooth profile of the billet is greater than that on the left tooth profile. The main reason is that the height of the right ear is higher than that of the left ear. The friction shear factor increases and the height of the right ear increases with the maximum value of 0.51mm. the height of the left ear does not change obviously. The feeding speed of the rolling wheel increased, the height of the right ear increased, the maximum added value was 0.48 mm, the height of the left ear decreased and the maximum decrease value was 0.25 mm. The rotational speed of the rolling wheel increased, the height of the right ear decreased, the maximum decrease was 0.48 mm, and the height of the left ear increased, the maximum value was 0.26 mm. When the radius of the top corner of the gear is changed, there is no obvious change in the height of the right and left ear. 3. Based on the forming mechanism of the ear bursting defect, the multi-pass rolling forming process of the bevel gear is put forward, which is advanced and rotated. The pre-feed rate of each pass rolling wheel is determined by curve calibration method. The first to 4th passes are 2.1 mm / 3.6 mm / 5.2 mm and 6.9 mm / m respectively. The metal flow trend on both sides of the billet tooth profile is larger than that on the inside, and the tooth root of the multi-pass rolling wheel can effectively restrain the non-uniform deformation of the metal and limit the formation of the ear-piercing defect. The pre-feed rate of the multi-pass rolling wheel is too small. Ear defects can not be effectively inhibited; When the prefeed rate is too large, the tooth shape metal overflow forms folding defect at the tooth root of the billet.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TG61;TG335
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 崔克天;崔鳳奎;徐紅玉;蘇志鵬;;滾軋輪設(shè)計(jì)的彈塑性修正試驗(yàn)研究[J];礦山機(jī)械;2006年04期
2 彭樹杰;劉玉蘭;杜鵑;王志宏;;汽車轉(zhuǎn)向器轉(zhuǎn)向齒輪冷滾軋技術(shù)研究[J];汽車工藝與材料;2009年08期
3 楊延祜;冷打(冷滾軋)工藝簡(jiǎn)況[J];拖拉機(jī);1979年02期
4 顧曼茜;;東北大學(xué)工學(xué)系精密機(jī)械材料學(xué)講座[J];鍛壓技術(shù);1981年02期
5 許國基,孫樹華,羅興華;滾軋法制備自支撐金屬靶的研究[J];中國核科技報(bào)告;1988年00期
6 許國基,孫樹華,羅興華;滾軋法制備自支撐金屬靶的研究[J];中國核科技報(bào)告;1988年S2期
7 孫慶華;;小模數(shù)花鍵滾軋輪設(shè)計(jì)計(jì)算[J];機(jī)械工藝師;1988年09期
8 ;精加工內(nèi)孔工具——超精內(nèi)徑滾軋頭[J];中小型電機(jī);2003年01期
9 彭樹杰;;齒形不對(duì)稱軸類零件冷滾軋技術(shù)研究[J];模具技術(shù);2008年01期
10 В.Г.Канорович;鄭永楷;段鼎昌;;滾軋氣瓶的方法[J];重型機(jī)械譯叢;1966年05期
相關(guān)重要報(bào)紙文章 前1條
1 黃祖堯;用綠色技術(shù)制造低碳產(chǎn)品 滾軋成形技術(shù)或成發(fā)展趨勢(shì)[N];機(jī)電商報(bào);2010年
相關(guān)博士學(xué)位論文 前1條
1 王志奎;漸開線花鍵軸冷滾軋模具CAPP系統(tǒng)關(guān)鍵模塊研究與實(shí)現(xiàn)[D];燕山大學(xué);2010年
相關(guān)碩士學(xué)位論文 前8條
1 張少林;直傘齒輪滾軋成形工藝的數(shù)值模擬研究[D];吉林大學(xué);2016年
2 韓鳳磷;漸開線花鍵冷滾軋工藝及設(shè)備研究[D];燕山大學(xué);2005年
3 王君麗;花鍵管增量式兩輪冷滾軋工藝及數(shù)值模擬[D];武漢理工大學(xué);2009年
4 崔克天;花鍵冷滾軋有限元分析及彈塑性修正研究[D];河南科技大學(xué);2006年
5 端雪松;滾軋輪設(shè)計(jì)系統(tǒng)的研究與開發(fā)[D];武漢理工大學(xué);2008年
6 富壯;精密冷滾軋機(jī)床本體關(guān)鍵技術(shù)研究[D];燕山大學(xué);2002年
7 劉慧敏;直齒輪滾軋成形工藝設(shè)計(jì)及數(shù)值模擬[D];山東大學(xué);2013年
8 馬博;CARB軸承弧形滾子冷滾軋成形技術(shù)研究[D];河南科技大學(xué);2012年
,本文編號(hào):1468234
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1468234.html