基于磁導(dǎo)率檢測技術(shù)的鐵磁試件檢測試驗(yàn)研究
本文關(guān)鍵詞: 無損檢測 磁導(dǎo)率檢測 應(yīng)力集中 疲勞損傷 熱處理工藝 出處:《南昌航空大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:磁導(dǎo)率檢測技術(shù)是一種依據(jù)探頭閉合磁路中感應(yīng)電壓與磁通量的變化率成正比的電磁感應(yīng)原理來檢測試件磁導(dǎo)率變化的評價方法。該檢測技術(shù)不僅可高精度檢測構(gòu)件某區(qū)域與磁導(dǎo)率相關(guān)的各種變化,如應(yīng)力集中、疲勞損傷、結(jié)構(gòu)相變、老化蛻變等,還能夠檢測力學(xué)韌性和力學(xué)脆性的轉(zhuǎn)變、檢測鐵磁材料的馬氏體奧氏體相變、檢測位錯缺陷密度變化、檢測晶粒晶界的變化等。本文首先介紹了磁導(dǎo)率檢測技術(shù)的研究背景及國內(nèi)外研究現(xiàn)狀。基于電磁學(xué)、鐵磁學(xué)、金屬物理學(xué)、電磁檢測、熱處理等多個學(xué)科知識,闡述了磁導(dǎo)率檢測技術(shù)的檢測機(jī)理;從電磁感應(yīng)原理和磁路歐姆定律出發(fā),推導(dǎo)分析了磁導(dǎo)率檢測技術(shù)的檢測方法和檢測原理。依據(jù)磁導(dǎo)率檢測原理,針對棒狀待檢構(gòu)件設(shè)計(jì)研制一高靈敏檢測傳感器,研究了檢測線圈繞線線經(jīng)、繞線線圈匝數(shù)、激勵電壓對最佳檢測頻率和檢測分辨率的影響。研究發(fā)現(xiàn),最佳激勵頻率隨線徑的增加而減少,信號分辨率隨線徑的增加而增加;繞線匝數(shù)與激勵最佳頻率無關(guān),但與信號分辨率有關(guān);激勵電壓對最佳頻率無影響,但對信號分辨力有影響。試驗(yàn)中所用的傳感器參數(shù)為:激勵線圈和檢測線圈的線經(jīng)采用0.35mm,線圈纏繞采用激勵線圈和檢測線圈疊加的纏繞方式;選用交流電壓源作為激勵源,最佳激勵電壓為5V,最佳檢測頻率為250Hz,選取最佳激勵線圈和檢測線圈都為400匝。分別對Q235鋼、45號鋼進(jìn)行了拉伸、疲勞試驗(yàn)研究,對40Cr鋼進(jìn)行了熱處理試驗(yàn)研究。測量分析了磁導(dǎo)率參量隨拉應(yīng)力、殘余應(yīng)力和熱處理組織之間的變化關(guān)系。在拉伸試驗(yàn)中,研究發(fā)現(xiàn),Q235鋼絕對信號變化量為0.33V,相對信號變化量可達(dá)到8%;對45號鋼,絕對信號變化量為0.3V,相對信號變化量可達(dá)到7.6%。檢測信號對拉力殘余應(yīng)力的反應(yīng)非常靈敏,Q235鋼絕對信號變化量為0.8V,相對信號變化量可達(dá)到20%;對45號鋼,絕對信號變化量為1.0V,相對信號變化量可達(dá)到26%。對疲勞損傷的檢測靈敏度較低,在整個疲勞損傷試驗(yàn)過程中,Q235鋼絕對信號變化量為0.13V,相對信號變化量可達(dá)到3.3%;對45號鋼,絕對信號變化量為0.035V,相對信號變化量可達(dá)到1%。在熱處理試驗(yàn)中,磁導(dǎo)率信號隨淬火溫度的升高而減小;在相同淬火溫度條件下,磁導(dǎo)率信號隨回火溫度的升高而增加。依據(jù)磁導(dǎo)率檢測技術(shù),可有效測量試件所處的應(yīng)力狀態(tài)和殘余應(yīng)力狀態(tài);依據(jù)應(yīng)力作用后遺留的殘余應(yīng)力,可判斷構(gòu)件曾經(jīng)受過的最大應(yīng)力,測定構(gòu)件的應(yīng)力前歷狀況;依據(jù)磁導(dǎo)率信號值可有效地判斷熱處理工藝質(zhì)量。
[Abstract]:The permeability measurement technique is a new method to measure the change of permeability of the sample according to the principle of the inductive voltage in the closed magnetic circuit of the probe is proportional to the change rate of magnetic flux. This technique can not only be used to detect the magnetic permeability of the specimen with high precision. A variety of changes related to permeability in an area of a component. Such as stress concentration, fatigue damage, structural transformation, aging transformation, can also be used to detect mechanical toughness and mechanical brittleness transformation, to detect martensite austenitic transformation of ferromagnetic materials, and to detect the change of dislocation defect density. Firstly, this paper introduces the research background of permeability measurement technology and the research status at home and abroad, based on electromagnetism, ferromagnetism, metal physics, electromagnetic detection. In this paper, the mechanism of permeability testing technology is expounded, based on the knowledge of heat treatment and many other disciplines. Based on the principle of electromagnetic induction and the Ohm law of magnetic circuit, the detection method and principle of permeability detection technology are deduced and analyzed. A highly sensitive detection sensor is designed and developed for rod-shaped components to be tested. The effects of coil winding, winding coil turns and excitation voltage on the optimal detection frequency and detection resolution are studied. The optimal excitation frequency decreases with the increase of the line diameter, and the signal resolution increases with the increase of the line diameter. The number of winding turns is independent of the optimal excitation frequency, but is related to the signal resolution. The excitation voltage has no effect on the optimum frequency, but has an effect on the signal resolution. The sensor parameters used in the test are as follows: the line of the exciting coil and the detecting coil is 0.35mm. Coil winding adopts the winding mode of excitation coil and detection coil superposition; The AC voltage source is selected as the excitation source, the optimal excitation voltage is 5 V, the optimal detection frequency is 250 Hz, and the optimum excitation coil and detection coil are 400 turns. The tensile and fatigue tests of 45 # steel and the heat treatment test of 40Cr steel were carried out. The magnetic permeability parameters with tensile stress were measured and analyzed. The relationship between residual stress and heat treatment structure. In the tensile test, it is found that the absolute signal of Q235 steel is 0.33 V, and the relative signal change can reach 8 parts. For 45 steel, the absolute signal variation is 0.3 V, and the relative signal variation can reach 7.6. The detection signal is very sensitive to the residual stress of tensile force. The absolute signal change of Q235 steel is 0.8V, and the relative signal variation can reach 20V. For 45 steel, the absolute signal change is 1.0 V, and the relative signal variation can reach 26%. The sensitivity of fatigue damage detection is low, and it is in the whole process of fatigue damage test. The absolute signal change of Q235 steel is 0.13V, and the relative signal variation can reach 3.3V; For 45 steel, the absolute signal variation is 0.035 V, and the relative signal variation can reach 1. In the heat treatment test, the permeability signal decreases with the increase of quenching temperature. At the same quenching temperature, the permeability signal increases with the tempering temperature. According to the permeability measurement technology, the stress state and the residual stress state of the specimen can be effectively measured. According to the residual stress left behind by the stress action, the maximum stress of the component can be judged, and the stress history of the component can be measured. According to the signal value of permeability, the quality of heat treatment process can be effectively judged.
【學(xué)位授予單位】:南昌航空大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG115
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 董懷鎖;侯德鑫;王曉娜;葉樹亮;;基于初始磁導(dǎo)率的轉(zhuǎn)向節(jié)球化質(zhì)量在線檢測可靠性評價[J];儀表技術(shù)與傳感器;2016年03期
2 陶蓋;元泉;王群;;鐵氧體磁環(huán)并聯(lián)結(jié)構(gòu)磁導(dǎo)率研究與驗(yàn)證[J];安全與電磁兼容;2016年01期
3 伍倪燕;;熱處理對機(jī)床主軸用40Cr、65Mn鋼力學(xué)性能的影響[J];制造技術(shù)與機(jī)床;2016年02期
4 張衛(wèi)民;邱忠超;于霞;孫宏波;;利用強(qiáng)化磁激勵場提高磁記憶檢測靈敏度的可行性分析[J];中國機(jī)械工程;2015年24期
5 徐楊;宋仁伯;楊富強(qiáng);張磊峰;趙超;;拉絲機(jī)塔輪軸用40Cr鋼熱處理工藝優(yōu)化[J];金屬熱處理;2015年06期
6 李曉燕;;對酒鋼生產(chǎn)的40Cr鋼熱處理工藝試驗(yàn)研究[J];甘肅冶金;2015年01期
7 ZHOU Shaoping;SHEN Yehui;ZHANG Hao;CHEN Dequan;;Heat Treatment Effect on Microstructure, Hardness and Wear Resistance of Cr26 White Cast Iron[J];Chinese Journal of Mechanical Engineering;2015年01期
8 許西寧;葉陽升;江成;余祖俊;柯在田;;鋼軌應(yīng)力檢測中超聲導(dǎo)波模態(tài)選取方法研究[J];儀器儀表學(xué)報(bào);2014年11期
9 韓暉;肖迎春;白生寶;劉國強(qiáng);梁棟;;結(jié)構(gòu)疲勞損傷的聲發(fā)射檢測可靠性研究[J];機(jī)械設(shè)計(jì)與制造工程;2014年06期
10 任尚坤;郭峰;徐振瀚;;20#鋼構(gòu)件應(yīng)力疲勞檢測的新技術(shù)及試驗(yàn)研究[J];儀器儀表學(xué)報(bào);2014年05期
相關(guān)會議論文 前1條
1 張剛;李家寶;裴永茂;;超磁致伸縮材料磁疇觀測[A];中國力學(xué)學(xué)會學(xué)術(shù)大會'2009論文摘要集[C];2009年
相關(guān)博士學(xué)位論文 前1條
1 周浩淼;鐵磁材料非線性磁彈性耦合理論及其在超磁致伸縮智能材料中的應(yīng)用[D];蘭州大學(xué);2007年
相關(guān)碩士學(xué)位論文 前7條
1 呂錚;鐵磁性材料矯頑力測應(yīng)力技術(shù)研究[D];沈陽工業(yè)大學(xué);2016年
2 范紅山;25CrMo4精鍛空心半軸的熱處理工藝研究[D];重慶理工大學(xué);2014年
3 王珉;大型鍛件氫脆機(jī)理及其殘余應(yīng)力場研究[D];燕山大學(xué);2012年
4 金哲;鋼軌應(yīng)力的電磁超聲檢測技術(shù)研究[D];南京航空航天大學(xué);2011年
5 尹冠人;中碳鋼調(diào)質(zhì)后冷擠壓成形性能實(shí)驗(yàn)研究[D];上海交通大學(xué);2009年
6 程尚華;高硬度耐磨焊條的研制[D];天津大學(xué);2007年
7 劉俐超;X射線應(yīng)力檢測系統(tǒng)的擴(kuò)展與應(yīng)用[D];北京工業(yè)大學(xué);2007年
,本文編號:1456711
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1456711.html