TC4合金激光熔覆耐磨自潤滑涂層的組織與性能研究
本文關(guān)鍵詞: 鈦合金 激光熔覆 自潤滑涂層 h-BN Ti_3SiC_2 摩擦磨損 出處:《天津工業(yè)大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:鈦合金的彈性模量低、比強度高、具有優(yōu)異的耐腐蝕性與耐熱性,普遍使用在航空、石油、汽車和化工等領(lǐng)域。然而鈦合金的摩擦系數(shù)大、耐磨性能差等不足限制了它的應(yīng)用領(lǐng)域。激光熔覆金屬-陶瓷復(fù)合涂層很大水平上增強了鈦合金的硬度和耐磨性。常選用Ni基合金與陶瓷粉末的混合粉末作為熔覆材料制備Ni基耐磨復(fù)合涂層,使熔覆涂層的硬度與耐摩性大幅度提高。但隨著現(xiàn)代工業(yè)的不斷發(fā)展,不僅需要提高熔覆涂層的耐磨性,還要求涂層具備自潤滑性來滿足難以使用潤滑油的工況。因此,常在熔覆涂層中加入一定的固體潤滑劑,如在Ni基合金中加入h-BN、WS2、CaF2等來制備Ni基耐磨減摩涂層。本文選用h-BN、Ti3SiC2作為潤滑劑來制備Ni基自潤滑耐磨減摩涂層,使用XRD、SEM、EDS等設(shè)備觀察涂層的顯微組織并分析其物相構(gòu)成,使用顯微硬度儀、摩擦磨損試驗機、電化學(xué)工作站測試了涂層的硬度、耐磨性及耐蝕性能,解釋了熔覆材料對熔覆層的強化機理與潤滑機制。研究結(jié)果如下:Ni60+h-BN熔覆涂層物相主要由TiC、TiB、TiB2、CrB、Ni3B、Ni2B和較少的h-BN組成。當(dāng)h-BN含量為10%,P=3kW,V=8mm/s時獲得最大硬度值在1200 HV0.5左右,并獲得了最小摩擦系數(shù)在0.37~0.4之間比Ni60熔覆涂層降低36%,最小磨損量2.6 mg與Ni60涂層相差不多。Ni60+10%h-BN涂層隨掃描速度的增加,腐蝕電位均正向移動,在V=10mm/s的耐腐蝕性最佳。Ni60+Ti3SiC2 熔覆涂層物相主要由 TiC、TiB2、Ti3SiC2、Ti5Si3、γ-Ni 固溶體、(Ti,V)C金屬化合物組成。當(dāng)Ti3SiC2含量為7.5%,P=3kW,F=10mm/s時熔覆層獲得了最大顯微硬度,在1150~1300HV0.2之間;當(dāng)Ti3SiC2含量為10%,P=3 kW,V=12 mm/s時熔覆層獲得了最小的摩擦系數(shù)在0.2~0.24之間比Ni60涂層降低將近40%,獲得最小磨損量1.1 mg比Ni60涂層降低50%左右。涂層的耐腐蝕隨Ti3SiC2含量的增加性能呈現(xiàn)先增強后減弱的趨勢,含量為7.5%時獲得最佳的耐腐蝕性能。
[Abstract]:Titanium alloys have low elastic modulus, high specific strength, excellent corrosion resistance and heat resistance, and are widely used in aviation, petroleum, automobile and chemical industry. However, the friction coefficient of titanium alloys is large. Its application field is limited by its poor wear resistance. Laser cladding metal-ceramic composite coating enhances the hardness and wear resistance of titanium alloy to a great extent. The mixed powder of Ni-based alloy and ceramic powder is often chosen as the mixture of titanium alloy and ceramic powder. Ni-based wear-resistant composite coatings were prepared by cladding materials. The hardness and friction resistance of the cladding coating are greatly improved, but with the development of modern industry, it is not only necessary to improve the wear resistance of the cladding coating. It is also required that the coating be self-lubricating to meet the operating conditions which are difficult to use. Therefore, a certain solid lubricant is added to the cladding coating, such as h-BNN WS2 in Ni-base alloy. In this paper, the Ni-based self-lubricating anti-friction coating was prepared by using h-BNNTi3SiC2 as lubricant, and the Ni-base self-lubricating anti-friction coating was prepared by XRD-SEM. EDS and other equipment observed the microstructure of the coating and analyzed its phase composition. The hardness, wear resistance and corrosion resistance of the coating were tested by microhardness tester, friction and wear tester and electrochemical workstation. The mechanism of strengthening and lubricating of the cladding layer by cladding materials is explained. The results are as follows: the phase of the cladding coating is mainly composed of TiB2TiB2CrBN3B. When the content of h-BN is 10%, the maximum hardness is about 1 200 HV0.5 when the content of h-BN is 10 ~ 3 kW / s. The minimum friction coefficient is 36% lower than that of Ni60 cladding coating. The minimum wear amount of 2.6mg is not much different from that of Ni60 coating. The corrosion potential of Ni60 10h-BN coating moves forward with the increase of scanning speed. The best corrosion resistance of V _ (10) mm / s. Ni60 Ti3SiC2 cladding coating is mainly composed of TiCnTiB2Ti3SiC2Ti5Si3. The composition of 緯 -Ni solid solution is composed of TiNV C metal compounds. The maximum microhardness of the cladding layer is obtained when the Ti3SiC2 content is 7.5 kWF 10 mm / s. Between 1150 and 1300 HV0.2; The content of Ti3SiC2 was 10kW. The minimum friction coefficient of the cladding layer was 40% lower than that of Ni60 coating at VX 12 mm/s. The minimum wear amount of 1. 1 mg was about 50% lower than that of Ni60 coating. The corrosion resistance of the coating increased firstly and then decreased with the increase of Ti3SiC2 content. The optimum corrosion resistance is obtained when the content is 7.5.
【學(xué)位授予單位】:天津工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG174.4
【參考文獻】
相關(guān)期刊論文 前10條
1 常成;劉建永;楊偉;曾大新;;激光熔覆技術(shù)及其在汽車工業(yè)中的應(yīng)用[J];湖北汽車工業(yè)學(xué)院學(xué)報;2016年02期
2 陸小龍;劉秀波;余鵬程;陳瑤;石皋蓮;吳少華;徐東;;后熱處理對304不銹鋼激光熔覆Ni60/h-BN自潤滑耐磨復(fù)合涂層組織和摩擦學(xué)性能的影響[J];摩擦學(xué)學(xué)報;2016年01期
3 任佳;劉秀波;余鵬程;陸小龍;陳瑤;石皋蓮;吳少華;徐東;;不同載荷下鈦合金激光熔覆Ni60/h-BN自潤滑耐磨復(fù)合涂層的摩擦學(xué)性能[J];摩擦學(xué)學(xué)報;2015年04期
4 路金蓉;周洋;李海燕;鄭涌;李世波;黃振鶯;;Cu/Ti_3SiC_2體系潤濕性及潤濕過程的研究[J];無機材料學(xué)報;2014年12期
5 李立鑫;柳學(xué)全;丁存光;李一;李楠;李金普;李發(fā)長;;Cr_3C_2-Ni-Ti_3SiC_2新型減摩復(fù)合材料的高溫摩擦學(xué)行為[J];中國有色金屬學(xué)報;2014年02期
6 周愛國;李正陽;李良;王李波;李尚升;;Ti_3SiC_2結(jié)合立方氮化硼超硬復(fù)合材料的制備與微觀結(jié)構(gòu)[J];硅酸鹽學(xué)報;2014年02期
7 雷貽文;孫榮祿;唐英;;鈦合金表面激光熔覆Ni基合金涂層中析出相熱力學(xué)模擬計算[J];材料工程;2013年10期
8 張堅;吳文妮;趙龍志;;激光熔覆研究現(xiàn)狀及發(fā)展趨勢[J];熱加工工藝;2013年06期
9 郭純;陳建敏;姚潤鋼;周健松;張世堂;;激光熔覆原位制備Ti_3Al金屬間化合物涂層結(jié)構(gòu)及摩擦學(xué)性能[J];摩擦學(xué)學(xué)報;2013年01期
10 王東生;田宗軍;沈理達;黃因慧;;激光熔覆技術(shù)研究現(xiàn)狀及其發(fā)展[J];應(yīng)用激光;2012年06期
,本文編號:1454618
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1454618.html