微細(xì)電解銑槽加工技術(shù)研究
本文關(guān)鍵詞: 微細(xì)電解加工 微型槽 納秒脈沖電源 雙噴嘴對(duì)流式電解液流場(chǎng) 加工精度 出處:《大連理工大學(xué)》2016年碩士論文 論文類型:學(xué)位論文
【摘要】:近年以來,隨著先進(jìn)制造技術(shù)的迅猛發(fā)展,微型零部件結(jié)構(gòu)越來越廣泛地應(yīng)用于航空航天、生物醫(yī)療以及微機(jī)電系統(tǒng)(MEMS)等領(lǐng)域。微細(xì)電解加工技術(shù)作為微細(xì)特種加工技術(shù)之一,相比于其他微細(xì)加工技術(shù),微細(xì)電化學(xué)加工是以離子形式進(jìn)行材料去除,且加工表面質(zhì)量高,無再鑄層,加工工具電極無損耗,工具電極與工件不接觸,無加工應(yīng)力和加工熱等優(yōu)點(diǎn),成為先進(jìn)制造技術(shù)中的關(guān)鍵技術(shù)之一。微型槽結(jié)構(gòu)作為微型結(jié)構(gòu)中的基本結(jié)構(gòu)單元,是渦噴式航空發(fā)動(dòng)機(jī)渦輪葉片散熱單元的核心結(jié)構(gòu),對(duì)其要求極其苛刻,要求具有耐高溫高壓,表面質(zhì)量高且無再鑄層,微型槽幾何成型精度高等特性。本文基于微細(xì)電解加工技術(shù),設(shè)計(jì)研制了實(shí)驗(yàn)室首臺(tái)微細(xì)電解加工機(jī)床,基于此研制機(jī)床進(jìn)行微細(xì)電解加工型槽結(jié)構(gòu)進(jìn)行深入研究和探索實(shí)驗(yàn),并對(duì)實(shí)驗(yàn)結(jié)果進(jìn)行分析討論,主要從以下方面進(jìn)行研究。研制實(shí)驗(yàn)室首臺(tái)Micro ECM機(jī)床,并基于Lab VIEW平臺(tái)開發(fā)機(jī)床在線控制系統(tǒng)。通過優(yōu)化控制程序和調(diào)節(jié)機(jī)床主軸PID參數(shù),使其運(yùn)動(dòng)控制系統(tǒng)響應(yīng)時(shí)間小于0.1ms,最大超調(diào)量小于0.1μm,可實(shí)現(xiàn)工具電極在線制備、加工信號(hào)在線監(jiān)測(cè)以及可讀取CNC數(shù)控加工代碼執(zhí)行三維加工指令等功能,滿足微細(xì)電解加工要求。本文針對(duì)微細(xì)電解銑槽加工技術(shù)中的加工參數(shù)對(duì)微型槽加工結(jié)果的影響進(jìn)行探索研究實(shí)驗(yàn)。通過改變加工電源頻率、脈寬、加工電壓、工具電極轉(zhuǎn)速以及電解液濃度等不同加工參數(shù)設(shè)計(jì)五組實(shí)驗(yàn),加工出19組微型槽陣列,實(shí)驗(yàn)結(jié)果表明,采用低壓高頻窄脈寬加工電源結(jié)合工具電極高速旋轉(zhuǎn)能夠在保證加工材料去除效率的同時(shí)顯著提高微細(xì)電解銑槽加工成型精度和表面質(zhì)量,其加工底面表面粗糙度為80nm。針對(duì)上述實(shí)驗(yàn)過程中出現(xiàn)的微型槽左右側(cè)壁與底面拐角曲率半徑以及左右側(cè)壁斜度偏差較大等問題,本文基于流體力學(xué)伯努利原理建立了雙噴嘴對(duì)流式電解液流場(chǎng)模型,并設(shè)計(jì)2組對(duì)比實(shí)驗(yàn)進(jìn)行實(shí)驗(yàn)驗(yàn)證其模型的可行性。實(shí)驗(yàn)結(jié)果表明,采用雙噴嘴對(duì)流式電解液流場(chǎng)的微細(xì)電解銑槽加工能夠有效均化加工區(qū)域電解液流場(chǎng)和電場(chǎng),提高微型槽加工幾何精度的一致性。其加工后微型槽結(jié)構(gòu)左右側(cè)壁拐角曲率半徑平均偏差從3.66μm降低至0.34gm,其側(cè)壁與底面拐角曲率半徑值控制在8μm;微型槽結(jié)構(gòu)左右側(cè)壁斜度平均偏差從4.37°減小至0.73°,側(cè)壁斜度幾乎接近垂直,僅為91°。
[Abstract]:In recent years, with the rapid development of advanced manufacturing technology, the structure of micro-parts is more and more widely used in aerospace. Micro Electrochemical Machining (ECM) is one of the special micro machining technologies, compared with other micro machining technologies, such as biomedicine and micro electromechanical systems (MEMS). Micro-electrochemical machining is to remove materials in the form of ions, and the surface quality is high, there is no re-cast layer, tool electrode has no loss, tool electrode is not in contact with workpiece, no processing stress and processing heat, and so on. As the basic structure unit of micro structure, micro slot structure is the core structure of turbine blade heat dissipation unit of turbojet aero-engine. It is required to have the characteristics of high temperature and high pressure, high surface quality and no recast layer, high precision of geometric forming of micro groove. Based on the technology of micro electrolysis machining, the first micro electrolytic machining machine tool in laboratory has been designed and developed in this paper. On the basis of this machine tool, the structure of micro-electrolysis machining groove was studied and the experimental results were analyzed and discussed. The first Micro ECM machine tool is developed from the following aspects. The on-line control system of machine tool is developed based on Lab VIEW platform. The response time of the motion control system is less than 0.1ms by optimizing the control program and adjusting the PID parameters of the spindle of the machine tool. The maximum overshoot is less than 0.1 渭 m, which can realize the functions of on-line preparation of tool electrode, on-line monitoring of machining signal and reading of CNC NC machining code to execute 3D machining instructions. In order to meet the requirements of micro electrolytic machining, this paper studies the effect of machining parameters on the machining results of micro electrolytic milling groove. By changing the frequency of power supply, pulse width, processing voltage. Five groups of experiments were designed with different machining parameters, such as rotating speed of tool electrode and concentration of electrolyte, and 19 groups of microgroove arrays were fabricated. The experimental results show that. The high speed rotation of low voltage high frequency narrow pulse width machining power supply and tool electrode can improve the machining precision and surface quality of micro electrolytic milling groove while ensuring the material removal efficiency. The roughness of the machining bottom surface is 80 nm. In view of the problems such as the corner curvature radius of the left and right side wall of the micro groove and the corner curvature radius of the left and right side wall and the deviation of the left and right side wall slope which appear in the above experiment process. Based on the Bernoulli principle of fluid mechanics, a two-nozzle flow field model for electrolytic electrolyte was established in this paper, and two groups of experiments were designed to verify the feasibility of the model. The flow field and electric field of electrolyte in the area can be effectively homogenized by micro-electrolytic milling groove machining with double nozzles to the flow field of flow electrolyte. The geometric accuracy of micro grooves is improved. After machining, the mean deviation of curvature radius of left and right side walls of micro grooves is reduced from 3.66 渭 m to 0.34 gm. The curvature radius of the side wall and bottom surface is controlled at 8 渭 m. The mean deviation of the left and right side slope of the micro groove structure is reduced from 4.37 擄to 0.73 擄, and the lateral wall slope is almost vertical, only 91 擄.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TG662
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 于洽;曾永彬;張海;朱荻;曲寧松;;陽極振動(dòng)輔助微細(xì)電解線切割技術(shù)[J];機(jī)械工程學(xué)報(bào);2012年23期
2 王少華;朱荻;;微尺度線電極電解加工[J];航空學(xué)報(bào);2009年09期
3 王昆;朱荻;張朝陽;;微細(xì)電解線切割加工的基礎(chǔ)研究[J];中國(guó)機(jī)械工程;2007年07期
4 余祖元;郭東明;賈振元;;微細(xì)電火花加工技術(shù)[J];中國(guó)科技論文在線;2007年03期
5 張朝陽;朱荻;王明環(huán);;納秒脈沖微細(xì)電化學(xué)加工的理論及試驗(yàn)[J];機(jī)械工程學(xué)報(bào);2007年01期
6 王昆;朱荻;王明環(huán);;微米尺度線電極的電化學(xué)腐蝕法制備[J];機(jī)械科學(xué)與技術(shù);2006年09期
7 張朝陽,朱荻,王明環(huán),曲寧松;超短脈沖電流微細(xì)電解加工技術(shù)研究[J];中國(guó)機(jī)械工程;2005年14期
8 李兵,陳雪峰,胡橋,何正嘉;基于小波有限元的懸臂梁裂紋識(shí)別[J];振動(dòng)工程學(xué)報(bào);2004年02期
9 李小海,王振龍,趙萬生;微細(xì)電化學(xué)加工研究新進(jìn)展[J];電加工與模具;2004年02期
10 朱荻;國(guó)外電解加工的研究進(jìn)展[J];電加工與模具;2000年01期
相關(guān)碩士學(xué)位論文 前1條
1 詹士成;采用旋轉(zhuǎn)電極的微細(xì)電解銑削加工研究[D];大連理工大學(xué);2014年
,本文編號(hào):1446479
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1446479.html