Ti6A14V的高速切削加工的有限元分析及摩擦模型的研究
發(fā)布時(shí)間:2018-01-19 06:11
本文關(guān)鍵詞: 摩擦模型 Ti6Al4V 高速切削加工 有限元模擬 出處:《昆明理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:欽合金以其輕質(zhì)、耐腐蝕性、耐熱性以及大的比強(qiáng)度和良好的韌性等等一系列的優(yōu)點(diǎn),在航空航天、石油化工、汽車、造船以及醫(yī)藥等行業(yè)得到了廣泛的應(yīng)用。但是鈦合金的難加工性一直困擾著眾多的國(guó)家學(xué)者,在高速切削鈦合金時(shí),刀具的磨損不僅造成加工成本的增加,而且還影響切削加工的效率。為了降低刀具成本,提高加工效率,必須搞清楚刀具和工件材料之間的摩擦性質(zhì)。本文以鈦合金Ti6Al4V為研究對(duì)象,研究了在不同的切削條件下刀具和工件材料之間的摩擦問(wèn)題。本課題首先對(duì)國(guó)內(nèi)外高速切削加工以及切削仿真中的摩擦模型的研究現(xiàn)狀進(jìn)行了概括。然后通過(guò)對(duì)金屬切削加工過(guò)程有限元建模中的材料本構(gòu)模型、摩擦模型、切削分離模型以及網(wǎng)格的劃分技術(shù)等一些關(guān)鍵技術(shù)進(jìn)行分析,建立起二維正交切削有限元模型。利用有限元仿真軟件Advantage FEM,在不同摩擦系數(shù)下分別進(jìn)行模擬切削,并通過(guò)對(duì)不同摩擦系數(shù)下模擬得到的切削力和試驗(yàn)測(cè)得的切削力進(jìn)行對(duì)比分析,將二者之間的誤差控制在5%以內(nèi),來(lái)確定刀具和工件材料之間的平均摩擦系數(shù)。然后再利用現(xiàn)有的平均摩擦系數(shù)計(jì)算公式,在不同切削條件下,調(diào)整平均摩擦系數(shù)公式中的修正系數(shù)c的值,使得模擬的切削力和試驗(yàn)的切削力的誤差控制在5%以內(nèi)。根據(jù)算出的不同切削條件下的各個(gè)平均摩擦系數(shù),進(jìn)行數(shù)據(jù)擬合,建立起摩擦模型。然后利用該摩擦模型進(jìn)行三維模擬仿真,并將模擬得到的數(shù)據(jù)和試驗(yàn)數(shù)據(jù)進(jìn)行對(duì)比分析。從而證明該摩擦模型的正確性。
[Abstract]:Chin alloy with its lightweight, corrosion resistance, heat resistance and large specific strength and good toughness and a series of advantages in aerospace, petrochemical, automotive. Shipbuilding, medicine and other industries have been widely used, but the difficult processing of titanium alloys has been puzzling many national scholars, in high-speed cutting titanium alloys, tool wear not only causes the increase of processing costs. In order to reduce the cutting cost and improve the machining efficiency, it is necessary to find out the friction properties between the cutting tool and the workpiece material. In this paper, the titanium alloy Ti6Al4V is taken as the research object. The friction problem between cutting tools and workpiece materials under different cutting conditions is studied. Firstly, the current situation of friction models in high-speed cutting and cutting simulation at home and abroad is summarized. The material constitutive model in the finite element modeling of metal cutting process. Some key technologies, such as friction model, cutting separation model and meshing technology, are analyzed, and a two-dimensional orthogonal cutting finite element model is established. The finite element simulation software Advantage FEM is used. Simulation cutting is carried out under different friction coefficients, and the error between them is controlled within 5% by comparing and analyzing the cutting force simulated under different friction coefficient and the cutting force measured by experiment. To determine the average friction coefficient between cutting tool and workpiece material, and then adjust the value of correction coefficient c in the formula of average friction coefficient under different cutting conditions by using the existing formula of average friction coefficient. The error of the simulated cutting force and the experimental cutting force is controlled within 5%. The data are fitted according to the calculated average friction coefficients under different cutting conditions. A friction model is established, and then the friction model is used to carry out three-dimensional simulation, and the data obtained from the simulation and the experimental data are compared and analyzed to prove the correctness of the friction model.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG506.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 謝婧;;高速切削加工在機(jī)械制造中的應(yīng)用[J];機(jī)械設(shè)計(jì)與制造;2006年06期
2 曹智;趙鋼;李躍中;;高速切削加工的刀具選擇[J];電大理工;2008年02期
3 陳萃;紀(jì)義國(guó);;高速切削加工中新型智能刀柄單元的設(shè)計(jì)[J];長(zhǎng)春理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年01期
4 龔厚仙;;數(shù)控高速切削加工技術(shù)的發(fā)展與應(yīng)用研究[J];數(shù)字技術(shù)與應(yīng)用;2011年06期
5 戴玲;;淺談高速切削加工技術(shù)及應(yīng)用[J];科學(xué)大眾(科學(xué)教育);2011年11期
6 李家峰;張亞雙;孫老,
本文編號(hào):1442965
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1442965.html
最近更新
教材專著