激光沖擊對銅薄膜電學性能的影響及其沖擊效應仿真研究
發(fā)布時間:2018-01-01 13:35
本文關鍵詞:激光沖擊對銅薄膜電學性能的影響及其沖擊效應仿真研究 出處:《江蘇大學》2016年碩士論文 論文類型:學位論文
更多相關文章: 激光沖擊 磁控濺射 銅薄膜 電學性能 仿真模擬
【摘要】:集成電路產(chǎn)業(yè)是微電子產(chǎn)業(yè)的基礎,在經(jīng)濟發(fā)展中起到重要作用。然而,在超大集成電路的設計制造中,隨著集成度的增進和線寬的減少,電路連線材料強度提高及其電阻率的有效降低成為研究熱點問題之一。激光沖擊處理技術是一種新型的表面處理技術,具有能使材料產(chǎn)生形變、相變和位錯等組織變化從而改善其性能的獨特優(yōu)勢。本文基于小能量激光沖擊處理工藝,從實驗和仿真兩個方面對激光沖擊后納米銅薄膜的電學性能變化以及沖擊效應進行了研究。主要取得了如下成果:(1)對納米銅薄膜的制備工藝進行了研究。通過改變襯底溫度分別在硅片(Si)和聚酰亞胺(PI)上鍍膜,比較分析了其表面形貌、組織結構以及電學性能。結果表明:在工作氣壓0.5Pa、濺射功率100w、襯底溫度150℃條件下兩種基體上制備的薄膜表面平整、晶粒大小均勻、缺陷相對于其他溫度較少;同時測得此條件下制備態(tài)Cu/Si薄膜電阻率為1.4×10-8Ω.m,Cu/PI薄膜電阻率為2.3×10-8Ω.m。(2)開展了激光微沖擊納米銅薄膜的實驗研究;谝痪S應變波理論對沖擊作用下材料內(nèi)部應力波傳播的基本過程進行了分析。結合SEM、XRD、TEM等方法對沖擊后薄膜進行分析發(fā)現(xiàn):激光沖擊處理后薄膜的表面粗糙度降低,晶粒出現(xiàn)了“長大”的現(xiàn)象,且內(nèi)部有孿晶結構生成。電學性能測試表明:Cu/Si薄膜電阻率最大降低為原來的87.2%,Cu/PI薄膜電阻率最大降低為原來的89.4%。(3)開展了激光沖擊納米銅薄膜效應的模擬研究。運用應力波理論進行模擬分析了激光沖擊作用下薄膜與基體界面的應力波傳播特征;并對沖擊后表面應變程度進行討論。研究表明:當沖擊波峰值壓力小于薄膜的彈性極限時,薄膜沒有發(fā)生塑性變形,沖擊波為彈性波。當沖擊波峰值壓力大于薄膜彈性極限時,沖擊波為彈塑性波。此外,表面應變程度隨激光功率密度的增大而增加,應變最大數(shù)值出現(xiàn)在激光光斑中心位置,且在同一激光功率密度作用下,表面應變程度也表現(xiàn)出隨沖擊次數(shù)的增加而增加的現(xiàn)象,但應變增大幅度隨沖擊次數(shù)的增加而減小。
[Abstract]:The integrated circuit industry is the foundation of the microelectronics industry and plays an important role in the economic development. However, in the design and manufacture of VLSI, with the increase of integration and the decrease of line width. The improvement of the strength and the effective reduction of the resistivity of the circuit connection materials have become one of the hot issues. Laser shock treatment is a new surface treatment technology, which can make the material deform. The unique advantages of phase transformation and dislocation change to improve its performance. This paper is based on the low energy laser shock treatment process. The changes of electrical properties and impact effects of nanocrystalline copper films after laser shock were studied from two aspects of experiment and simulation. The preparation process of nanocrystalline copper thin films was studied. The films were deposited on silicon (Si) and polyimide (Pi) by changing the substrate temperature. The surface morphology, microstructure and electrical properties were compared and analyzed. The results showed that the sputtering power was 100w at the working pressure of 0.5 Pa. At the substrate temperature of 150 鈩,
本文編號:1364733
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/1364733.html
最近更新
教材專著