天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

納米石墨相氮化碳的可控制備及在儲(chǔ)能和光催化領(lǐng)域的應(yīng)用

發(fā)布時(shí)間:2018-07-04 19:01

  本文選題:氮化碳管狀 + 纖維微串; 參考:《北京理工大學(xué)》2015年博士論文


【摘要】:石墨相氮化碳(CCN)具有優(yōu)越的機(jī)械性能、獨(dú)特的電子結(jié)構(gòu)和優(yōu)異的化學(xué)穩(wěn)定性,近年來(lái)不僅被作為有機(jī)合成反應(yīng)的催化劑,還被應(yīng)用于開(kāi)光電轉(zhuǎn)換器、氣敏傳感器和熒光傳感器、場(chǎng)發(fā)射器、燃料電池電極和儲(chǔ)氫材料等領(lǐng)域,是一種極有前途的材料。本文研究石墨相氮化碳的制備、表征、生長(zhǎng)機(jī)理及其性能.本文使用新的化學(xué)方法合成該材料,通過(guò)場(chǎng)發(fā)射掃描電子顯微鏡(FESEM)、X射線衍射(XRD)、光電子能譜(XPS)、X光能譜散布分析儀(EDX)、透射電子顯微鏡(TEM)、高分辨率透射電子顯微鏡(HRTEM)及選區(qū)電子衍射(SAED)等測(cè)試手段對(duì)獲得的新形貌的GCN樣品進(jìn)行表征,這種材料潛在的性能包括光催化劑、超級(jí)電容器、氧還原,析氧和析氫反應(yīng)等。首先,使用一種簡(jiǎn)單、高效、綠色環(huán)保的化學(xué)方法,將三聚氰胺粉末放在濃硝酸中低溫下預(yù)處理,合成了具有高比表面積、微串狀獨(dú)特形貌的石墨相C3N4(ms-GCN)材料。ms-GCN在可見(jiàn)光下可以催化降解羅丹明B、甲基藍(lán)和甲基橙。由于高比表面積和合適的禁帶寬度,表現(xiàn)出較高的光降解效率。ms-GCN的一級(jí)降解速率常數(shù)高于已報(bào)道的其它材料,例如GCN, Fe2O3/GCN and TiO2納米管。因此,這種合成方法可以獲得高的表面積和獨(dú)特的形態(tài),使材料具有更高光降解活性。其次,我們建立了一種簡(jiǎn)單的可規(guī)模化的制備管狀石墨相C3N4 (TGCN)的方法。獨(dú)特的管狀形貌的構(gòu)建是基于用濃硝酸預(yù)處理三聚氰胺。本文首次將管狀TGCN作為超級(jí)電容器的電極材料并測(cè)試其電化學(xué)儲(chǔ)能性能,在6摩爾的氫氧化鉀溶液、0.2A/g電流密度下的電容為233 F/g,優(yōu)良的性能歸功于高表面積(182.61 m2/g)和氮元素的存在。另外,1000次循環(huán)后電容保持率仍然高達(dá)90%。,在可見(jiàn)光下測(cè)試了TGCN光催化降解有機(jī)染料亞甲藍(lán)(MB)和亞甲基橙(MO)的性能,相比于體相GCN, TGCN顯示出良好的光催化活性和穩(wěn)定性。TGCN材料的高催化活性來(lái)源于高表面積可以提供更多的活性位點(diǎn)。TGCN在超級(jí)電容器和光催化方面的良好性能使其成為能源存儲(chǔ)和清潔環(huán)境領(lǐng)域充滿前景的材料。然后,我們開(kāi)發(fā)出一種簡(jiǎn)單、高效、可規(guī);姆椒ㄖ苽銰CN納米線作為超級(jí)電容器電極材料和光催化劑。制備的一維結(jié)構(gòu)GCNNF1內(nèi)米線優(yōu)點(diǎn)如下:1、氮含量更高,有利于提高導(dǎo)電性和電化學(xué)性能;2、具有高表面積可以提供更大的電極-電解液接觸面積、促進(jìn)可見(jiàn)光吸收和物質(zhì)傳輸,進(jìn)一步的增加氧化還原電位。因此,GCNNF作為超級(jí)電容器電極材料在0.1摩爾Na2SO4電解質(zhì)、1 A/g電流密度下的電容為263.75 F/g,2000循環(huán)后電容保留率仍然高達(dá)93.6%,即使在高電流密度(10 A/g)下電容也能達(dá)到208 F/g,其電容保持率仍然高達(dá)89.5%。此外,與體相石墨型C3N4(GCN)相比,GCNNF在降解RhB時(shí)表現(xiàn)出更高的光催化活性,降解速率常數(shù)高于體相石墨型C3N4(GCN)光催化劑的4倍,這主要?dú)w功于GCNNF擁有更高的表面積,合適的能帶和更少的缺陷。作為價(jià)格低廉的前驅(qū)體,三聚氰胺合成GCNNF的方法無(wú)害簡(jiǎn)易且無(wú)需使用模板劑,得到的產(chǎn)品GCNNF在超級(jí)電容器和光催化降解方面表現(xiàn)出優(yōu)良的性能,有望應(yīng)用于能源存儲(chǔ)和環(huán)境保護(hù)應(yīng)用領(lǐng)域。之后,本文使用擁有類此結(jié)構(gòu)的TGCN和GCNNF材料以探索石墨相氮化碳(GCN)的形貌對(duì)催化性能的影響,研究?jī)煞N形貌的氮化碳在在堿性電解質(zhì)中氧還原反應(yīng)(ORR)的活性。其中管狀GCN材料在溶解氧中氧還原反應(yīng)(ORR)的起始電勢(shì)接近商用Pt/C材料。此外,相比與Pt/C,管狀的GCN表現(xiàn)出比Pt/C更高的穩(wěn)定性和甲醇耐受性,適合燃料電池的應(yīng)用。最后,本文發(fā)展出一種簡(jiǎn)易、可大規(guī)模生產(chǎn)的低溫化學(xué)方法制備C0304修飾的的石墨相氮化碳(GCN)納米管。管狀石墨相氮化碳(GCN)和C0304之間強(qiáng)烈的協(xié)同效應(yīng)使其可以作為析氧(OER)和析氫(HER)反應(yīng)的雙功能催化劑。高表面積、獨(dú)特的結(jié)構(gòu)和復(fù)合組分使C03O4@GCN擁有更加容易接觸的的氧化還原催化位點(diǎn)。對(duì)于OER反應(yīng),相較于基準(zhǔn)物IrO2和RuO2,Co3O4@GCN納米復(fù)合材料在堿性電解質(zhì)中展現(xiàn)出更高的超電勢(shì)(0.12 V)和電流密度(147 mA/cm2)以及更好的耐久性。此外,Co3O4@GCN納米復(fù)合材料在HER反應(yīng)中也表現(xiàn)出更低的過(guò)電勢(shì)和穩(wěn)定的電流密度等優(yōu)異性能。預(yù)計(jì)Co3O4@GCN納米復(fù)合材料在大規(guī)模光解水和燃料電池領(lǐng)域具有比貴金屬更大的吸引力。
[Abstract]:Graphite phase carbon nitride (CCN) has excellent mechanical properties, unique electronic structure and excellent chemical stability. In recent years, it has been used not only as a catalyst for organic synthesis, but also in the fields of optoelectronic converters, gas sensors and fluorescence sensors, field launchers, fuel cell electrodes and hydrogen storage materials. In this paper, we study the preparation, characterization, growth mechanism and properties of graphite phase nitriding. This paper uses a new chemical method to synthesize the material by field emission scanning electron microscopy (FESEM), X ray diffraction (XRD), photoelectron spectroscopy (XPS), X light spectrum dispersive analyzer (EDX), transmission electron microscope (TEM), high resolution transmission electron Microscopically (HRTEM) and elective electron diffraction (SAED) are used to characterize the newly formed GCN samples. The potential properties of this material include photocatalyst, supercapacitor, oxygen reduction, oxygen evolution and hydrogen evolution reaction. First, a simple, efficient, green chemical method is used to put melamine powder in concentrated nitric acid. The graphite phase C3N4 (ms-GCN) material.Ms-GCN with high specific surface area and unique morphology is synthesized under low and medium temperature, which can catalyze the degradation of Luo Danming B, methyl blue and methyl orange under visible light. The first order degradation rate constant of.Ms-GCN is higher than that with high surface area and proper band gap, which shows higher photodegradation efficiency.Ms-GCN. Other materials reported, such as GCN, Fe2O3/GCN and TiO2 nanotubes. Therefore, this synthesis method can obtain high surface area and unique morphology, and make the material more photodegradable. Secondly, we have established a simple and scalable method for the preparation of tubular Shi Moxiang C3N4 (TGCN). The unique tubular morphology is based on the construction of the basis. In this paper, we first treat melamine with concentrated nitric acid. In this paper, the tubular TGCN is used as the electrode material of the supercapacitor for the first time and its electrochemical energy storage performance is tested. At 6 mole of potassium hydroxide solution, the capacitance of the 0.2A/g current density is 233 F/g, the excellent performance is attributed to the high surface area (182.61 m2/g) and the existence of nitrogen elements. In addition, after 1000 cycles. The capacitive retention rate is still up to 90%., and the properties of TGCN photocatalytic degradation of methylene blue (MB) and methylene orange (MO) are tested under visible light. Compared with the bulk phase GCN, TGCN shows good photocatalytic activity and stability. The high catalytic activity of.TGCN materials is derived from the high surface area, which can provide more active site.TGCN in super electricity. The good performance of the container and photocatalysis makes it a promising material in the field of energy storage and clean environment. Then, we have developed a simple, efficient, scalable method for preparing GCN nanowires as supercapacitor electrode materials and photocatalysts. The advantages of the one dimensional structure of GCNNF1 inner rice are as follows: 1, nitrogen content Higher electrical conductivity and electrochemical performance; 2, a high surface area can provide a larger electrode - electrolyte contact area, promote visible absorption and material transfer, and further increase the redox potential. Therefore, GCNNF is used as a supercapacitor electrode material at 0.1 mole of electrolyte, 1 A/g current density. For 263.75 F/g, the retention rate of capacitance after 2000 cycle is still up to 93.6%. Even at high current density (10 A/g), the capacitance can reach 208 F/g, and the retention of capacitance is still up to 89.5%.. Compared with the bulk graphite C3N4 (GCN), GCNNF shows higher photocatalytic activity when it degrade RhB, and the degradation rate constant is higher than that of bulk graphite C3N4 (GCN). ) 4 times the photocatalyst, the main result is that GCNNF has a higher surface area, a suitable energy band and less defects. As a cheap precursor, the method of melamine synthesis of GCNNF is harmless and without the use of template. The product GCNNF has excellent performance in supercapacitor and photocatalytic degradation. It is expected to be good. It is used in the field of energy storage and environmental protection. After the use of TGCN and GCNNF materials with this structure to explore the influence of the morphology of graphite phase carbon nitride (GCN) on the catalytic performance, the activity of oxygen reduction reaction (ORR) in the alkaline electrolyte of two morphologies of carbon nitride (ORR) is studied. The tubular GCN material is reduced to oxygen in the dissolved oxygen. The starting potential of the reaction (ORR) is close to the commercial Pt/C material. In addition, compared with Pt/C, the tubular GCN shows higher stability and methanol tolerance than Pt/C, and is suitable for the application of fuel cells. Finally, this paper develops a simple, large-scale production low temperature chemical method to prepare C0304 modified graphite phase carbon nitride (GCN) nanotubes. The strong synergistic effect between graphite phase carbon nitride (GCN) and C0304 makes it a bifunctional catalyst for the reaction of oxygen evolution (OER) and hydrogen evolution (HER). High surface area, unique structure and composite components make C03O4@GCN have more easy to contact oxidation-reduction catalytic sites. For OER reaction, IrO2 and RuO2, Co3O4@GCN na The rice composite exhibits a higher overpotential (0.12 V) and current density (147 mA/cm2) and better durability in alkaline electrolyte. In addition, the Co3O4@GCN nanocomposites also exhibit lower overpotential and stable current density in the HER reaction. The prefabricated Co3O4@GCN nanocomposites are in large-scale photodissociation water and The field of fuel cells is more attractive than precious metals.
【學(xué)位授予單位】:北京理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TQ127.11

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 ;“能量轉(zhuǎn)換晶態(tài)材料的可控制備與性能”團(tuán)隊(duì)入選教育部2012年度創(chuàng)新團(tuán)隊(duì)發(fā)展計(jì)劃[J];黑龍江大學(xué)工程學(xué)報(bào);2013年01期

2 段敬來(lái);;重離子徑跡模板中鈀納米線的結(jié)晶性可控制備(英文)[J];IMP & HIRFL Annual Report;2009年00期

3 熊述元;;中科院上海硅酸鹽所實(shí)現(xiàn)納米結(jié)構(gòu)可控制備和組裝[J];半導(dǎo)體信息;2006年05期

4 張雁;紀(jì)彥玲;王濤;靳彥欣;汪廬山;李再峰;;大尺度吸水膨脹微球的可控制備及性能[J];高分子材料科學(xué)與工程;2013年05期

5 馮華君;唐芳瓊;;新型納米熒光及其復(fù)合材料的可控制備和表征[J];感光科學(xué)與光化學(xué);2006年06期

6 王玲燕;王春利;杜芳林;;二氧化硅/硅酸錳核殼微球的可控制備[J];中國(guó)科技論文;2012年09期

7 呂志;段雪;;陰離子層狀材料的可控制備[J];催化學(xué)報(bào);2008年09期

8 ;過(guò)程工程所溶劑萃取反膠團(tuán)法可控制備納米氟化扢獲進(jìn)展[J];硅酸鹽通報(bào);2013年05期

9 ;信息動(dòng)態(tài)[J];炭素技術(shù);2007年02期

10 封偉;;不同微結(jié)構(gòu)聚二氧乙撐噻吩的可控制備及其光電性能研究[J];功能材料信息;2007年05期

相關(guān)會(huì)議論文 前10條

1 張立德;;納米材料的可控制備與表征[A];中國(guó)顆粒學(xué)會(huì)超微顆粒專委會(huì)2011年年會(huì)暨第七屆海峽兩岸超微顆粒學(xué)術(shù)研討會(huì)論文集[C];2011年

2 周華鋒;馬全紅;丁藝;夏強(qiáng);郝曉幀;顧寧;;咪喹莫特納米結(jié)構(gòu)脂質(zhì)載體的可控制備及表征[A];2005年納米和表面科學(xué)與技術(shù)全國(guó)會(huì)議論文摘要集[C];2005年

3 彭生杰;茍興龍;張莉;陳軍;;三元硫?qū)倩衔锛{/微米結(jié)構(gòu)的可控制備[A];中國(guó)化學(xué)會(huì)第26屆學(xué)術(shù)年會(huì)無(wú)機(jī)與配位化學(xué)分會(huì)場(chǎng)論文集[C];2008年

4 李輝;黨文輝;彭海琳;劉忠范;;拓?fù)浣^緣體納米薄片的可控制備與表征[A];2011中國(guó)材料研討會(huì)論文摘要集[C];2011年

5 王一杰;閻云;黃建濱;;金屬-有機(jī)復(fù)合的一維半導(dǎo)體微納材料可控制備[A];中國(guó)化學(xué)會(huì)第十三屆膠體與界面化學(xué)會(huì)議論文摘要集[C];2011年

6 程方益;陶占良;梁靜;陳軍;;錳系氧化物微納結(jié)構(gòu)可控制備與相關(guān)電化學(xué)性能研究[A];中國(guó)化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第8分會(huì)場(chǎng)摘要集[C];2012年

7 羅迪帆;黃旭;江紹基;;微納結(jié)構(gòu)薄膜可控制備與光學(xué)特性研究[A];“廣東省光學(xué)學(xué)會(huì)2013年學(xué)術(shù)交流大會(huì)”暨“粵港臺(tái)光學(xué)界產(chǎn)學(xué)研合作交流大會(huì)”會(huì)議手冊(cè)論文集[C];2013年

8 駱廣生;蘭文杰;徐建鴻;呂陽(yáng)成;;粉體材料可控制備的研究進(jìn)展[A];中國(guó)顆粒學(xué)會(huì)第七屆學(xué)術(shù)年會(huì)暨海峽兩岸顆粒技術(shù)研討會(huì)論文集[C];2010年

9 杜樂(lè);譚t,

本文編號(hào):2097051


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2097051.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶6cb8e***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
久久婷婷综合色拍亚洲| 国产av精品一区二区| 人妻熟女中文字幕在线| 国产日产欧美精品视频| 午夜精品在线视频一区| 五月婷婷六月丁香在线观看| 久久国内午夜福利直播| 在线一区二区免费的视频| 国产精品久久熟女吞精| 亚洲一级在线免费观看| 国产精品十八禁亚洲黄污免费观看 | 偷拍洗澡一区二区三区| 精品一区二区三区不卡少妇av | 日本淫片一区二区三区| 91精品日本在线视频| 国产精品视频一区麻豆专区| 国产无摭挡又爽又色又刺激| 中文字幕精品一区二区年下载| 欧美丰满大屁股一区二区三区| 欧美日韩在线第一页日韩| 成年人黄片大全在线观看| 亚洲国产成人精品一区刚刚| 国产又粗又黄又爽又硬的| 91天堂素人精品系列全集| 激情内射日本一区二区三区| 欧美不雅视频午夜福利| 九九热在线免费在线观看| 极品少妇嫩草视频在线观看| 亚洲综合天堂一二三区| 东北老熟妇全程露脸被内射| 亚洲一区二区三区福利视频| 国产麻豆精品福利在线| 亚洲国产91精品视频| 国产成人午夜福利片片| 色婷婷人妻av毛片一区二区三区| 少妇肥臀一区二区三区| 婷婷一区二区三区四区| 国产自拍欧美日韩在线观看| 精品欧美日韩一二三区| 亚洲国产精品国自产拍社区| 欧美大胆美女a级视频|