天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 化學(xué)工程論文 >

介孔二氧化硅的功能化改性及其環(huán)氧樹脂復(fù)合材料的熱解與燃燒性能研究

發(fā)布時間:2018-03-18 03:29

  本文選題:功能化介孔二氧化硅 切入點:環(huán)氧樹脂 出處:《中國科學(xué)技術(shù)大學(xué)》2015年博士論文 論文類型:學(xué)位論文


【摘要】:介孔二氧化硅憑借自身獨特的介孔結(jié)構(gòu),被廣泛地應(yīng)用在分子吸附、催化、復(fù)合材料等領(lǐng)域。為了解決介孔中空二氧化硅的合成步驟繁瑣且價格昂貴、以及當(dāng)前阻燃環(huán)氧樹脂的阻燃效率低和熱穩(wěn)定性下降等問題,本論文提出了一種合成介孔中空二氧化硅的新方法,并且制備了納米片層及含磷阻燃劑組裝改性的介孔二氧化硅以及介孔二氧化硅負(fù)載納米顆粒雜化物,研究環(huán)氧樹脂/功能化介孔二氧化硅納米復(fù)合材料的熱穩(wěn)定性和阻燃性能,并探討了可能的阻燃機(jī)理。取得的研究進(jìn)展如下: 1.為了解決目前合成介孔中空二氧化硅存在的價格昂貴、產(chǎn)量低及制備過程復(fù)雜等問題,開發(fā)了一種超聲輔助制備介孔中空二氧化硅的新方法。通過TEM、 SEM和XRD等技術(shù)對產(chǎn)物的形貌、組成和結(jié)構(gòu)進(jìn)行了表征,成功地制備了尺寸不同的的介孔中空二氧化硅。相比于傳統(tǒng)的合成方法,超聲輔助制備介孔中空二氧化硅可以精確調(diào)控中空結(jié)構(gòu)的尺寸并且能夠?qū)崿F(xiàn)大批量生產(chǎn)。研究發(fā)現(xiàn):隨著超聲處理功率的增加,介孔中空二氧化硅的殼壁厚度減小,功率越高越有利于形成中空結(jié)構(gòu)的介孔二氧化硅。乙醇/水的體積比也是影響介孔空心二氧化硅形成的重要因素,隨著體積比的降低介孔空心二氧化硅球體及內(nèi)部空心結(jié)構(gòu)的尺寸也隨之減小。與傳統(tǒng)合成介孔空心二氧化硅的方法相比較,超聲輔助法明顯地減少了成本,并且制備步驟精簡,為介孔中空二氧化硅大規(guī)模制備提供了新的思路。 2.采用層層組裝法制備了m-SiO2@Co-Al LDH雜化物,并利用溶液共混法制備環(huán)氧樹脂納米復(fù)合材料。TEM和SEM照片可以發(fā)現(xiàn),尺寸均勻的m-SiO2球體被成功地合成,并且隨著吸附層數(shù)的增加m-SiO2表面變得更加粗糙。XRD、XPS和STEM表征證明,由于靜電作用Co-Al LDH納米片層均勻地分布在m-SiO2表面。TGA研究表明,與純EP相比,EP/m-SiO2@Co-Al LDH復(fù)合材料的殘?zhí)柯实玫搅孙@著的提高。Cone結(jié)果表明,EP/m-SiO2@Co-Al LDH納米復(fù)合材料的阻燃性能要優(yōu)于同含量的其它復(fù)合材料。這主要由于m-SiO2和Co-Al LDH之間產(chǎn)生了協(xié)同效應(yīng)。由于m-SiO2具有相互連通的孔道結(jié)構(gòu),熱質(zhì)傳輸路徑長而曲折,從而限制了熱量和揮發(fā)性熱降解物的擴(kuò)散。其次,Co-Al LDH能夠促進(jìn)環(huán)氧樹脂成炭,從而延緩了氣體產(chǎn)物的逃逸,達(dá)到阻燃的目的。對復(fù)合材料進(jìn)行熱導(dǎo)率表征,發(fā)現(xiàn)EP/m-SiO2@Co-Al LDH的熱導(dǎo)率遠(yuǎn)低于EP/Co-Al LDH。DP-MS結(jié)果表明,EP基體的主要熱裂解產(chǎn)物為碳數(shù)較多的碎片,而EP/m-SiO2@Co-Al LDH復(fù)合材料的裂解產(chǎn)物成分為碳數(shù)較少的碎片,這種碳數(shù)較少的碎片更容易被催化而發(fā)生成炭。對炭渣進(jìn)行表征,發(fā)現(xiàn):m-SiO2@Co-Al LDH能促進(jìn)基體形成致密結(jié)實的炭層,阻止易燃性氣體揮發(fā)和氧氣擴(kuò)散,從而達(dá)到阻燃的目的。 3.通過自組裝法制備了HM-SiO2@Co-Al LDH@graphene雜化物,利用溶液共混法制備2wt%含量的EP/HM-SiO2@Co-Al LDH@graphene復(fù)合材料,以HM-SiO2及Co-Al LDH-graphene作為參照,結(jié)果發(fā)現(xiàn)HM-SiO2@Co-Al LDH@graphene對EP納米復(fù)合材料減毒和阻燃性能具有明顯的增強(qiáng)效果,并通過分析納米復(fù)合材料的熱降解氣相成分和碳?xì)堄嘣噲D揭示可能的減毒和阻燃機(jī)理。XRD、XPS和STEM表征證明,由于靜電作用Co-Al LDH和石墨烯納米片層均勻地分布在介孔二氧化硅表面。SSTF研究表明,與純EP、EP/HM-SiO2和EP/Co-Al LDH-graphene相比,EP/m-SiO2@Co-Al LDH復(fù)合材料表現(xiàn)出最為優(yōu)異的毒性氣體消除性能。一方面介孔二氧化硅自身的介孔結(jié)構(gòu)起到了良好的阻隔作用,可以延遲易揮發(fā)氣體與氧氣的交換;此外,Co-Al LDH能夠催化環(huán)氧樹脂成炭。錐形量熱儀結(jié)果表明,EP/HM-SiO2@Co-Al LDH@graphene納米復(fù)合材料的阻燃性能要優(yōu)于同含量的其它復(fù)合材料。 4.利用白組裝法制備了HM-SiO2@CS@PCL雜化物,并制備EP/HM-SiO2@CS@PCL納米復(fù)合材料,以HM-SiO2作為參照,結(jié)果發(fā)現(xiàn)HM-SiO2@CS@PCL對EP納米復(fù)合材料減毒和阻燃性能具有明顯的增強(qiáng)效果,并通過分析納米復(fù)合材料的熱降解氣相成分和碳?xì)堄嘣噲D揭示可能的減毒和阻燃機(jī)理。TEM和SEM照片表明,尺寸均勻的HM-SiO2球體被成功地合成,并且隨著組裝CS和PCL, HM-SiO2表面及孔道變得更加模糊。TGA研究表明,隨著HM-SiO2的添加,EP復(fù)合材料的熱穩(wěn)定性提高。與純EP相比,EP/HM-SiO2@CS@PCL復(fù)合材料的殘余物得到顯著提升且熱分解速率下降。一方面介孔二氧化硅自身的介孔結(jié)構(gòu)起到了良好的阻隔作用,可以延遲易揮發(fā)氣體的逃逸和氧氣的擴(kuò)散;另一方面吸附的CS和PCL可以催化產(chǎn)物成炭。Cone結(jié)果表明,HM-SiO2@CS@PCL納米復(fù)合材料的阻燃性能要優(yōu)于同含量的其它復(fù)合材料。這主要由于HM-SiO2、CS和PCL之間產(chǎn)生了協(xié)同效應(yīng)。HM-SiO2具有相互連通的孔道結(jié)構(gòu)并且熱導(dǎo)率低。熱量和質(zhì)量在這種孔道結(jié)構(gòu)中傳輸路徑長和曲折,這導(dǎo)致了熱量和揮發(fā)性熱降解物的擴(kuò)散收到限制。其次,CS和PCL的存在能夠促進(jìn)環(huán)氧樹脂成炭,從而延緩了氣體產(chǎn)物的逃逸,達(dá)到阻燃的目的。 5.采用離子吸附法和煅燒法法制備了HM-SiO2/NiCexOy雜化物,并應(yīng)用于環(huán)氧樹脂基體中,以HM-SiO2及NiCexOy作為參照,研究了HM-SiO2/NiCexOy對EP納米復(fù)合材料減毒和阻燃性能,并提出了可能的減毒和阻燃機(jī)理。TEM和HRTEM結(jié)果表明,我們成功地合成了尺寸均一的HM-SiO2/NiCexOy球體,NiCexOy顆粒均勻地分布在介孔中空二氧化硅表面和孔道中。Cone結(jié)果表明,EP/HM-SiO2/NiCexOy納米復(fù)合材料的阻燃性能要優(yōu)于同含量的其它復(fù)合材料。SSTF研究表明,隨著HM-SiO2或者NiCexOy的添加,EP復(fù)合材料燃燒過程中產(chǎn)生的CO濃度和煙密度都相應(yīng)減小。與純EP、EP/HM-SiO2和EP/NiCexOy相比,EP/HM-SiO2/NiCexOy復(fù)合材料的表現(xiàn)出最為優(yōu)異的毒性氣體消除性能。一方面介孔二氧化硅自身的介孔結(jié)構(gòu)起到了良好的阻隔作用,能夠延緩氣體產(chǎn)物與氧氣的交換。此外,NiCexOy顆粒能夠催化環(huán)氧樹脂成炭。
[Abstract]:Mesoporous silica with its own unique mesoporous structure, is widely used in adsorption, catalysis, composite materials and other fields. In order to solve the problem of hollow mesoporous silica synthesis procedures are complex and expensive, and the current decline in flame retardant epoxy resin flame retardant low efficiency and thermal stability, this paper presents a new method synthesis of hollow mesoporous silica, and nano lamellar and flame retardant assembled modified mesoporous silica nanoparticles and mesoporous silica supported hybrid, research on epoxy resin / thermal stability and flame retardant properties of functionalized mesoporous silica nanocomposites, the flame retardant mechanism was discussed. The following possible research progress:
1. in order to solve the synthesis of hollow mesoporous silica is expensive, the problem of low output and complex preparation process, developed a new method of ultrasonic assisted preparation of hollow mesoporous silica. The morphology of SEM and TEM, XRD and other techniques of product, composition and structure were characterized by the successful preparation of size the preparation of hollow mesoporous silica synthesis. Compared with the traditional method, ultrasonic assisted preparation of hollow mesoporous silica hollow structure can be precisely controlled size and can realize mass production. It was found that with the increase of ultrasonic power, the shell wall thickness of hollow mesoporous silica decreases, more conducive to power the formation of mesoporous silica hollow structure. The volume ratio of ethanol and water is also an important factor affecting the formation of hollow mesoporous silica, with the volume ratio of the lower mesoporous hollow two oxygen Silica spheres and hollow internal structure size decreases. Compared with the traditional method for the synthesis of mesoporous silica hollow, ultrasonic assisted method obviously reduces the cost, and the preparation steps of simplification, for preparing hollow mesoporous silica mass system and a new way of thinking.
2. using m-SiO2@Co-Al LDH hybrid layers of self-assembly were prepared by solution blending and preparation of epoxy resin nano composite material.TEM and SEM photos can be found, uniform sized m-SiO2 spheres were successfully synthesized, and with the increase of m-SiO2 adsorption layer surface becomes more rough.XRD, XPS and STEM indicated that the electrostatic interaction of Co-Al LDH nanosheet is evenly distributed on the surface of m-SiO2.TGA study showed that compared with pure EP, EP/m-SiO2@Co-Al carbon LDH composite rate improved significantly.Cone results show that the flame retardancy of EP/m-SiO2@Co-Al LDH nano composite material to other composite materials with superior content. This is mainly due to the synergistic effect between m-SiO2 and Co-Al LDH. Because m-SiO2 has interconnected pore structure, the heat transfer path is long and tortuous, thus limiting the heat and thermal degradation of the volatile Diffusion. Secondly, Co-Al LDH can promote the epoxy resin into carbon, thus delaying the escape of gas products, flame retardancy of the composite materials are thermal conductivity characterization, EP/m-SiO2@Co-Al LDH found that thermal conductivity was much lower than the EP/Co-Al LDH.DP-MS results showed that the main thermal pyrolysis products of EP matrix for carbon number of debris, and the pyrolysis products composition of EP/m-SiO2@Co-Al LDH composites for carbon less number of pieces, the carbon number of less debris is easier to occur. The catalytic carbon carbon residue were characterized and found that m-SiO2@Co-Al LDH can promote the formation of dense carbon layer of solid matrix, prevent flammable gas volatilization and oxygen diffusion, so as to achieve the purpose of flame retardant.
3. HM-SiO2@Co-Al was prepared by the self-assembly of LDH@graphene hybrids, EP/HM-SiO2@Co-Al LDH@graphene composites prepared by solution blending method, the content of 2wt%, HM-SiO2 and Co-Al LDH-graphene as a reference, the results showed that HM-SiO2@Co-Al attenuated LDH@graphene and flame retardant properties has obvious reinforcing effect of EP nano composite materials, nano composite materials and through the analysis of residual heat drop the gas phase composition and carbon reduction attempts to reveal the possible toxicity and mechanism of flame retardant.XRD, XPS and STEM indicated that the electrostatic interaction of Co-Al LDH and graphene nanosheets distributed uniformly on the surface of mesoporous silica.SSTF study showed that compared with pure EP, EP/HM-SiO2 and EP/Co-Al LDH-graphene, EP/m-SiO2@Co-Al LDH composite showed the most toxicity excellent gas elimination performance. On the one hand the mesoporous structure of mesoporous silica itself plays a good The barrier effect, can delay the exchange of volatile gas and oxygen; in addition, Co-Al LDH can catalyze epoxy resin into charcoal. The cone calorimeter results showed that the flame retardant properties of EP/HM-SiO2@Co-Al LDH@graphene nano composite material to other composite materials is better than the same content.
4. the use of white was fabricated in a HM-SiO2@CS@PCL hybrid, and the preparation of EP/HM-SiO2@CS@PCL nano composite materials, with HM-SiO2 as a reference, the results showed that HM-SiO2@CS@PCL has obvious reinforcing effect on EP nano composite attenuated and flame retardant properties, and through the analysis of nano composite material thermal residual gas phase composition and carbon reduction to reveal possible attenuated and the flame retardant mechanism of.TEM and SEM shows that the uniform size of HM-SiO2 spheres were successfully synthesized, and with the assembly of CS and PCL, HM-SiO2 surface and pores become more fuzzy.TGA research shows that with the addition of HM-SiO2, improve the thermal stability of EP composites. Compared with pure EP, the residue of EP/HM-SiO2@CS@PCL composites improved significantly and the thermal decomposition rate decreased. On the one hand, the mesoporous structure of mesoporous silica itself has played a good role in the barrier, can delay the volatile gas The escape and diffusion of oxygen; on the other hand, the adsorption of CS and PCL can catalyze the resultant carbon.Cone results show that the flame retardant properties of HM-SiO2@CS@PCL nano composite materials to other composite materials with superior content. This is mainly due to HM-SiO2, the synergistic effect of.HM-SiO2 with interconnected pore structure and low thermal conductivity between CS and PCL. Heat and mass in the pore structure in the transmission path long and tortuous, which leads to the diffusion of heat and thermal degradation of volatile is limited. Secondly, CS and PCL could promote the epoxy resin into carbon, thus delaying the escape of gas products, to achieve the purpose of flame retarding.
5. by ion adsorption method and calcination method HM-SiO2/NiCexOy hybrids were prepared and applied to the epoxy resin matrix, using HM-SiO2 and NiCexOy as a reference, the effects of HM-SiO2/NiCexOy on EP nanocomposite attenuated and flame retardant properties, and puts forward the possible mechanism of flame retardant and attenuated.TEM and HRTEM results showed that we successfully the synthesis of uniform HM-SiO2/NiCexOy sphere, NiCexOy particles are uniformly distributed in the hollow mesoporous silica surface and pore.Cone results showed that the flame retardant properties of EP/HM-SiO2/NiCexOy nano composite materials to other composite materials of.SSTF is better than the same content showed that with the addition of HM-SiO2 or NiCexOy, produced in the process of CO concentration and smoke density decreased the combustion of EP composite material. Compared with pure EP, EP/HM-SiO2 and EP/NiCexOy, EP/HM-SiO2/NiCexOy composites exhibited the most excellent toxicity The gas elimination performance. On the one hand the mesoporous structure of mesoporous silica itself plays a good role to delay the barrier, gas exchange and oxygen product. In addition, NiCexOy particles can catalyze epoxy resin into charcoal.

【學(xué)位授予單位】:中國科學(xué)技術(shù)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:TB332;TQ127.2

【共引文獻(xiàn)】

相關(guān)期刊論文 前10條

1 魏日出;陳洪林;張小明;索繼栓;;催化氧化處理工業(yè)廢氣中高濃度甲醛(英文)[J];催化學(xué)報;2013年10期

2 魏志勇;周城;宋平;陳廣義;戰(zhàn)美秋;梁繼才;張萬喜;;聚丁二酸丁二醇酯/籠型低聚倍半硅氧烷納米復(fù)合材料的結(jié)晶行為研究[J];高分子學(xué)報;2013年10期

3 施圖萬;陳建輝;吳孝松;俞大鵬;;藍(lán)寶石上石墨烯的近程催化生長研究[J];電子顯微學(xué)報;2013年05期

4 韓曉宇;孫德偉;;分子篩作為緩釋藥物載體的研究進(jìn)展[J];廣州化工;2013年18期

5 焦劍;吳廣力;劉蓬;蔡宇;;低介電常數(shù)的介孔SiO_2/PMMA雜化材料的研究[J];材料科學(xué)與工藝;2013年06期

6 黨昱;吳京鳳;何云華;白波;;酵母基多孔炭微球的熱裂解制備及其吸附性能研究[J];材料導(dǎo)報;2013年14期

7 王娜;孫冰;張靜;李旭日;方慶紅;;介孔分子篩/丙烯酸鈉改性三元乙丙吸水膨脹橡膠的合成及性能[J];高分子材料科學(xué)與工程;2013年12期

8 Fu-Chun Liu;En-Hou Han;Wei Ke;Nan Tang;Junbiao Wan;Guilai Yin;Jingwei Deng;Kangwen Zhao;;Polar Influence of the Organic Modifiers on the Structure of Montmorillonite in Epoxy Nanocomposites[J];Journal of Materials Science & Technology;2013年11期

9 劉躍軍;毛龍;;MgAlZnFe-CO_3 LDHs對PBS膨脹阻燃體系性能的影響[J];高等學(xué);瘜W(xué)學(xué)報;2013年12期

10 高穎;潘莉;;碳納米管/聚合物基復(fù)合材料研究進(jìn)展[J];材料導(dǎo)報;2014年01期

相關(guān)博士學(xué)位論文 前10條

1 李永海;基于溶膠—凝膠法的功能因子緩釋技術(shù)研究及其在紡織品芳香保健功能整理中的應(yīng)用[D];東華大學(xué);2010年

2 劉聰;聚氯乙烯/埃洛石納米管納米復(fù)合材料的結(jié)構(gòu)與性能[D];華南理工大學(xué);2011年

3 史建設(shè);凹凸棒石表面改性及其在尼龍6中的應(yīng)用[D];南京理工大學(xué);2010年

4 張俊珩;埃洛石納米管的表面改性及其對環(huán)氧樹脂復(fù)合材料結(jié)構(gòu)與性能的影響[D];華南理工大學(xué);2011年

5 齊瑞嶺;用于藥物輸送的靜電紡納米管/聚乳酸—羥基乙酸復(fù)合納米纖維的制備、表征、緩釋行為及藥物生物活性評價[D];東華大學(xué);2011年

6 杜憲;石墨烯的可控制備、后處理及其電化學(xué)電容性能研究[D];北京化工大學(xué);2013年

7 史家遠(yuǎn);不同形貌無定形二氧化硅的可控合成及其生物礦化意義[D];中國科學(xué)技術(shù)大學(xué);2013年

8 黃進(jìn);多功能介孔硅基吸附劑的制備及其對重金屬廢水的處理研究[D];上海師范大學(xué);2013年

9 李冬冬;AIE功能化介孔和層狀材料的制備及其應(yīng)用研究[D];吉林大學(xué);2013年

10 范方強(qiáng);水性超薄型鋼結(jié)構(gòu)防火涂料的制備及防火作用機(jī)理研究[D];華南理工大學(xué);2013年

,

本文編號:1627821

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/1627821.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶a3e6d***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com