蝦殼廢棄物中蛋白與活性肽特性與綜合利用研究
發(fā)布時(shí)間:2021-09-25 05:35
我國(guó)對(duì)蝦(Fenneropenaeus chinensis)資源極為豐富,隨著我國(guó)水產(chǎn)養(yǎng)殖業(yè)和海洋捕撈業(yè)的迅速發(fā)展,蝦產(chǎn)量不斷增加,僅對(duì)蝦年產(chǎn)量就達(dá)30萬(wàn)噸。為了便于保鮮,大部分蝦均以無(wú)頭無(wú)殼的冷凍蝦仁形式提供于國(guó)際市場(chǎng),從而產(chǎn)生大量的蝦頭、蝦殼廢棄物。這些蝦類(lèi)廢料如果不精深加工可造成水產(chǎn)資源的浪費(fèi),增加水產(chǎn)品的加工成本,并對(duì)生態(tài)環(huán)境造成污染。糖尿病已成為現(xiàn)代威脅人類(lèi)的主要疾病之一,僅次于心血管系統(tǒng)疾病和腫瘤。由于化學(xué)藥物的副作用,因此從傳統(tǒng)中草藥、食品資源以及從農(nóng)產(chǎn)品副產(chǎn)物資源中尋找治療糖尿病或輔助降血糖的藥品和功能保健食品具有重要意義。有研究表明,蝦殼里面的蝦青素和殼聚糖具有一定的降血糖作用,但尚未有關(guān)于蝦殼多肽降血糖活性及其相關(guān)產(chǎn)品研發(fā)的研究。此外,近年來(lái)對(duì)蝦加工廢棄物中回收營(yíng)養(yǎng)、活性成分的研究一般都會(huì)用到大量的酸、堿及有機(jī)溶劑,這樣不僅生產(chǎn)成本高,而且會(huì)造成二次污染。因此,充分利用蝦加工廢棄物日益受到國(guó)內(nèi)外研究者重視。擠壓加工技術(shù)是一種經(jīng)濟(jì)實(shí)用的新型加工技術(shù),不僅應(yīng)用于食品工業(yè)中,而且在飼料工業(yè)、油脂工業(yè)、釀造工業(yè)等領(lǐng)域中也有廣泛的應(yīng)用。有研究表明,不同處理方式可引起蝦殼蛋白的...
【文章來(lái)源】:天津大學(xué)天津市 211工程院校 985工程院校 教育部直屬院校
【文章頁(yè)數(shù)】:97 頁(yè)
【學(xué)位級(jí)別】:碩士
【文章目錄】:
摘要
ABSTRACT
Chapter1 General introduction
1.1 Bioactive constituents from marine processing waste
1.1.1 Background
1.1.2 Proteins,peptides and amino acids from marine processing waste
1.1.3 Carbohydrates
1.1.4 Lipids and fatty acids
1.1.5 Antioxidants
1.1.6 Other constituents
1.2 Research progress of bioactive constituents of shrimp shell wastes(SSW)
1.2.1 Protein and peptide
1.2.2 Chitin and chitosan
1.2.3 Carotenoids
1.2.4 Fatty acids
1.2.5 The effects of processing treatment on the properties of SSW
1.3 Research progress of edible films
1.3.1 Edible films from proteins
1.3.2 Polysaccharides based coatings
1.3.3 Lipid based films
1.3.4 Composite films
1.3.5 Recent trends on the study of films
1.4 Significance of this study
Chapter2 Biocatalytic conversion of shrimp shell wastes:optimization of hydrolytic conditions and theα-amylase inhibitory activity of the peptide hydrolysates
2.1 Introduction
2.2 Experimental materials,reagents and instruments
2.3 Methods
2.3.1 Enzymatic hydrolysis
2.3.2 The response surface methodology
2.3.3 Determination ofα-amylase inhibitory activities of shrimp shell wastes hydrolysates(SSWH)
2.3.4 Determination of antioxidant activities of SSWH
2.3.5 Amino acids compositional analysis of SSWH
2.3.6 Molecular weight distribution
2.3.7 Statistical analysis
2.4 Results and discussion
2.4.1 Optimization of the types of enzymes for hydrolysis of SSWH
2.4.2 Effect of hydrolysis pH on the α-amylase inhibitory activity of SSWH
2.4.3 Effect of hydrolysis time on theα-amylase inhibitory activity of SSWH
2.4.4 Effect of liquid-solid ratio on theα-amylase inhibitory activity of SSWH
2.4.5 Effect of enzyme concentration on theα-amylase inhibitory activity of SSWH
2.4.6 Effect of temperature on theα-amylase inhibitory activity of SSWH
2.4.7 The optimization of enzyme hydrolysis by response surface method
2.4.8 Antioxidant activities of SSWH obtained under the optimum conditions
2.4.9 The amino acids composition of SSWH obtained under the optimum conditions
2.4.10 Molecular weight distribution of SSWH obtained under the optimum conditions
2.5 Conclusion
Chapter3 Effect of extrusion on physicochemical properties,functional properties and antioxidant activities of shrimp shell wastes protein
3.1 Introduction
3.2 Experimental materials,reagents and instruments
3.3 Methods
3.3.1 Extrusion process
3.3.2 Preparation of SSWP
3.3.3 Amino acids composition of SSWP
3.3.4 Morphological analysis of SSWP
3.3.5 Thermal properties of SSWP
3.3.6 Circular dichroism spectroscopy (CD) of SSWP
3.3.7 UV-vis spectroscopy of SSWP
3.3.8.1 Protein solubility of SSWP
3.3.9 Antioxidant activities of SSWP in vitro
3.3.10 Statistical analysis
3.4 Results and discussion
3.4.1 Effects of extrusion treatment on yields of SSWP
3.4.2 Amino acid composition of SSWP
3.4.3 Scanning electron microscopy of SSWP
3.4.4 Thermal properties of SSWP
3.4.5 Circular dichroism spectroscopy of SSWP
3.4.6 The UV spectra of SSWP
3.4.7 Functional properties of SSWP
3.4.8 Antioxidant activity of SSWP
3.4.9 Principal component analysis
3.5 Conclusion
Chapter4 Physicochemical and antioxidant properties of shrimp shell waste protein-based films incorporated with different ethanol extracts for active packaging
4.1 Introduction
4.2 Experimental materials,reagents and instruments
4.3 Methods
4.3.1 Preparation of oolong tea extracts(OTE),corn silk extracts(CSE)and black soybean seed coat extract(BSSCE)
4.3.2 Extraction of SSWP
4.3.3 Film preparation
4.3.4 Characterization of SSWP-C-X films
4.3.5 Statistical analysis
4.4 Results and discussion
4.4.1 Film preparation and film thickness of SSWP-C-X films
4.4.2 Color of SSWP-C-X films
4.4.3 Light transmission and film transparency of SSWP-C-X films
4.4.4 Thermal properties of SSWP-C-X films
4.4.5 Microstructure of SSWP-C-X films
4.4.6 Antioxidant activity of SSWP-C-X films
4.5 Conclusion
Chapter5 Conclusions and prospects
References
Achievements
Acknowledgments
本文編號(hào):3409194
【文章來(lái)源】:天津大學(xué)天津市 211工程院校 985工程院校 教育部直屬院校
【文章頁(yè)數(shù)】:97 頁(yè)
【學(xué)位級(jí)別】:碩士
【文章目錄】:
摘要
ABSTRACT
Chapter1 General introduction
1.1 Bioactive constituents from marine processing waste
1.1.1 Background
1.1.2 Proteins,peptides and amino acids from marine processing waste
1.1.3 Carbohydrates
1.1.4 Lipids and fatty acids
1.1.5 Antioxidants
1.1.6 Other constituents
1.2 Research progress of bioactive constituents of shrimp shell wastes(SSW)
1.2.1 Protein and peptide
1.2.2 Chitin and chitosan
1.2.3 Carotenoids
1.2.4 Fatty acids
1.2.5 The effects of processing treatment on the properties of SSW
1.3 Research progress of edible films
1.3.1 Edible films from proteins
1.3.2 Polysaccharides based coatings
1.3.3 Lipid based films
1.3.4 Composite films
1.3.5 Recent trends on the study of films
1.4 Significance of this study
Chapter2 Biocatalytic conversion of shrimp shell wastes:optimization of hydrolytic conditions and theα-amylase inhibitory activity of the peptide hydrolysates
2.1 Introduction
2.2 Experimental materials,reagents and instruments
2.3 Methods
2.3.1 Enzymatic hydrolysis
2.3.2 The response surface methodology
2.3.3 Determination ofα-amylase inhibitory activities of shrimp shell wastes hydrolysates(SSWH)
2.3.4 Determination of antioxidant activities of SSWH
2.3.5 Amino acids compositional analysis of SSWH
2.3.6 Molecular weight distribution
2.3.7 Statistical analysis
2.4 Results and discussion
2.4.1 Optimization of the types of enzymes for hydrolysis of SSWH
2.4.2 Effect of hydrolysis pH on the α-amylase inhibitory activity of SSWH
2.4.3 Effect of hydrolysis time on theα-amylase inhibitory activity of SSWH
2.4.4 Effect of liquid-solid ratio on theα-amylase inhibitory activity of SSWH
2.4.5 Effect of enzyme concentration on theα-amylase inhibitory activity of SSWH
2.4.6 Effect of temperature on theα-amylase inhibitory activity of SSWH
2.4.7 The optimization of enzyme hydrolysis by response surface method
2.4.8 Antioxidant activities of SSWH obtained under the optimum conditions
2.4.9 The amino acids composition of SSWH obtained under the optimum conditions
2.4.10 Molecular weight distribution of SSWH obtained under the optimum conditions
2.5 Conclusion
Chapter3 Effect of extrusion on physicochemical properties,functional properties and antioxidant activities of shrimp shell wastes protein
3.1 Introduction
3.2 Experimental materials,reagents and instruments
3.3 Methods
3.3.1 Extrusion process
3.3.2 Preparation of SSWP
3.3.3 Amino acids composition of SSWP
3.3.4 Morphological analysis of SSWP
3.3.5 Thermal properties of SSWP
3.3.6 Circular dichroism spectroscopy (CD) of SSWP
3.3.7 UV-vis spectroscopy of SSWP
3.3.8.1 Protein solubility of SSWP
3.3.9 Antioxidant activities of SSWP in vitro
3.3.10 Statistical analysis
3.4 Results and discussion
3.4.1 Effects of extrusion treatment on yields of SSWP
3.4.2 Amino acid composition of SSWP
3.4.3 Scanning electron microscopy of SSWP
3.4.4 Thermal properties of SSWP
3.4.5 Circular dichroism spectroscopy of SSWP
3.4.6 The UV spectra of SSWP
3.4.7 Functional properties of SSWP
3.4.8 Antioxidant activity of SSWP
3.4.9 Principal component analysis
3.5 Conclusion
Chapter4 Physicochemical and antioxidant properties of shrimp shell waste protein-based films incorporated with different ethanol extracts for active packaging
4.1 Introduction
4.2 Experimental materials,reagents and instruments
4.3 Methods
4.3.1 Preparation of oolong tea extracts(OTE),corn silk extracts(CSE)and black soybean seed coat extract(BSSCE)
4.3.2 Extraction of SSWP
4.3.3 Film preparation
4.3.4 Characterization of SSWP-C-X films
4.3.5 Statistical analysis
4.4 Results and discussion
4.4.1 Film preparation and film thickness of SSWP-C-X films
4.4.2 Color of SSWP-C-X films
4.4.3 Light transmission and film transparency of SSWP-C-X films
4.4.4 Thermal properties of SSWP-C-X films
4.4.5 Microstructure of SSWP-C-X films
4.4.6 Antioxidant activity of SSWP-C-X films
4.5 Conclusion
Chapter5 Conclusions and prospects
References
Achievements
Acknowledgments
本文編號(hào):3409194
本文鏈接:http://sikaile.net/kejilunwen/huanjinggongchenglunwen/3409194.html
最近更新
教材專(zhuān)著