活性炭負載納米零價鐵的制備及其對難降解有機物去除性能的研究
[Abstract]:In this paper, the nano-iron (NZVI) loaded on the activated carbon carrier was prepared by loading the nano-iron (NZVI) on the activated carbon carrier, and the nano-iron (NZVI/ AC) was prepared by loading the nano-iron (NZVI) on the activated carbon carrier. The properties of non-degradable organic pollutants of trihalomethane (THMs) and acrylonitrile were selected as target pollutants, and the removal mechanism was studied. The preparation and characterization of NZVI and NZVI/ AC were studied in this paper. The nano-iron (NZVI) was prepared by a liquid-phase reduction method, and the supported nano-iron NZVI/ AC was prepared by using active carbon (AC) as a carrier, and the AC, NZVI and NZVI/ AC were characterized. The structure and morphology of NZVI, AC and NZVI/ AC were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The surface functional group, crystal structure and chemical composition of the sample were investigated by means of Fourier transform infrared (FT-IR), X-ray diffractometer (XRD) and X-ray photoelectron spectroscopy (XPS). The specific surface area, pore size and iron element content of the sample were determined by the specific surface area tester and the electron-coupled plasma atomic emission spectrometry (ICP-AES), respectively. The results show that the loading action of the activated carbon and the dispersion of the polyethylene glycol-4000 effectively reduce the degree of agglomeration of the nano-iron particles. The results of SEM and TEM show that the prepared supported nano-iron particles have a uniform size, a particle size of 30-80nm, and the iron particles are in a spherical shape, and are partially distributed on the outer surface of the active carbon and partially enter the pore canal of the active carbon. The BET specific surface area of NZVI was 25.8 m2/ g, and the specific surface area of NZVI/ AC after loading was 63.9 m2/ g. NZVI/ AC had a greater specific surface area and higher activity. The morphology and content of Fe element in the surface of NZVI/ AC particles were analyzed by energy spectrum EDS, and the experimental results were close to the theoretical value (10%). The results of XRD, FTIR and XPS all confirmed that the nano-valent iron was successfully loaded on the activated carbon, and the loaded nano-iron had good anti-oxidation ability and better dispersibility. The effect of NZVI, AC and NZVI/ AC on the removal of trihalomethane (THMs) was studied. The effects of the dosage, reaction time and initial pH of NZVI/ AC on the removal of trihalomethane were investigated. The results show that the removal and removal rate of trihalomethane are NZVI/ ACNZVIAC and ACNZVI/ ACNZVI. Increasing the dosage of the particles helps to improve the removal rate, but when the dosage is increased to 1.8 g/ L, the increase of the removal effect is not large. When the dosage of NZVI/ AC is 1.8 g/ L and the pH is neutral, the removal effect of the THMs is the best. The experimental results show that the bromomethane is easier to remove than the chloromethane, and the removal effect and the removal rate of the trihalomethane follow the order of CHBr3CHBr2ClCHBrCl2CHCl3. Furthermore, the experimental results also show that the removal rate of the trihalomethane with the high bromine number is higher than that of the low bromine number of the trihalomethane (CHBr3CHBr2ClCHBrCl2). The removal rate of the four trihalomethane was over 90%, and the highest removal rates of CHBr3, CHBr2Cl, CHBrCl2 and CHCl3 were 100%, 97.8%,95% and 94.5% respectively. The effect of activated carbon loaded iron and active carbon on the removal of acrylonitrile was studied. The results showed that the effect of NZVI/ AC on the removal of acrylonitrile was higher than that of AC, mainly due to the adsorption of the activated carbon itself on the acrylonitrile, and the Fe 2 + generated in the reaction. [H] and Fe0 itself have very strong reducibility and can react with acrylonitrile. Both the pseudo-first and the pseudo-second-order kinetic equations do not well state the process of removing the acrylonitrile from the NZVI/ AC. The Freundich model can better describe the adsorption isotherm of NZVI/ AC to acrylonitrile, and the correlation coefficient R20.98. It is known from the analysis of the UV-visible spectrophotometry and the Fourier infrared spectroscopy that the NZVI/ AC can decompose the acrylonitrile molecule, mainly due to the free hydrogen group[H] produced by the reaction and the chemical oxidation reduction effect between the newly formed Fe 2 + and the acrylonitrile. The activity of activated sludge was determined by the determination of the oxygen consumption rate of activated sludge. The results showed that the pretreatment of NZVI/ AC could improve the biodegradability of acrylonitrile wastewater and reduce its toxicity to activated sludge.
【學位授予單位】:山東大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:X703;TQ424.1
【相似文獻】
相關期刊論文 前10條
1 張鑫;陳祖亮;;固定化納米鐵修復水環(huán)境的研究進展[J];科技情報開發(fā)與經(jīng)濟;2010年22期
2 曾偉文;北京科學家研制成功“納米鐵紙”[J];粉末冶金工業(yè);2005年03期
3 亓家鐘;納米鐵治癌法[J];粉末冶金技術;2005年05期
4 熊平,郭萍,袁亞莉,何繼善;順磁納米鐵核素的研制及性能分析[J];中國生物醫(yī)學工程學報;2005年02期
5 羅駒華;張振忠;張少明;;氣相法制備納米鐵顆粒新進展[J];材料導報;2007年S1期
6 商偉贊;李新霞;郭萍;;微血管中納米鐵核素的輸運及收集效果分析[J];南華大學學報(自然科學版);2008年02期
7 劉炳晶;金朝暉;李鐵龍;安毅;李淑靜;王薇;;包覆型納米鐵的制備及對三氯乙烯的降解研究[J];環(huán)境科學;2009年01期
8 王雪;丁慶偉;劉宏芳;錢天偉;;不同分散劑作用下制備納米鐵及表征[J];太原科技大學學報;2010年05期
9 高樹梅;張躍進;陳云云;黃炎杰;;水處理應用中納米鐵顆粒的制備方法綜述[J];嘉興學院學報;2011年03期
10 張玉榮;吳杰;朱慧杰;張奎;;納米鐵負載材料應用研究[J];河南城建學院學報;2012年01期
相關會議論文 前10條
1 李鐵龍;金朝暉;劉海水;康海燕;劉振英;;納米鐵制備及其去除硝酸鹽氮研究[A];第三屆全國環(huán)境化學學術大會論文集[C];2005年
2 孫克寧;;微波合成法制備納米鐵酸鑭及其在中溫固體氧化物燃料電池中應用[A];科技、工程與經(jīng)濟社會協(xié)調(diào)發(fā)展——中國科協(xié)第五屆青年學術年會論文集[C];2004年
3 耿兵;金朝暉;李鐵龍;劉麗娟;李勇超;;殼聚糖修飾納米鐵的制備與去除水體中六價鉻污染的研究[A];中國化學會第26屆學術年會環(huán)境化學分會場論文集[C];2008年
4 方婧;單孝全;溫蓓;;菲在工業(yè)納米鐵、銅和二氧化硅上的吸附與解吸研究[A];中國化學會第26屆學術年會環(huán)境化學分會場論文集[C];2008年
5 張選軍;戴友芝;張慧;宋勇;;超聲波協(xié)同納米鐵降解2,4-二氯苯酚的研究[A];2005中國可持續(xù)發(fā)展論壇——中國可持續(xù)發(fā)展研究會2005年學術年會論文集(下冊)[C];2005年
6 李鐵龍;王學;金朝暉;;不同狀態(tài)下納米鐵對細胞毒性機制研究[A];第六屆全國環(huán)境化學大會暨環(huán)境科學儀器與分析儀器展覽會摘要集[C];2011年
7 李閃;衛(wèi)建軍;;OA-Pluronic包覆納米鐵在水中的穩(wěn)定性研究[A];第五屆全國環(huán)境化學大會摘要集[C];2009年
8 張耘;李益民;李建法;;改性膨潤土負載納米鐵去除廢水中環(huán)境污染物的研究[A];第六屆全國環(huán)境化學大會暨環(huán)境科學儀器與分析儀器展覽會摘要集[C];2011年
9 殷其亮;李筱琴;肖陽;;零價納米鐵在多孔介質(zhì)中的遷移研究[A];2012中國環(huán)境科學學會學術年會論文集(第四卷)[C];2012年
10 錢方針;郭守柱;蔣冬梅;張衛(wèi)國;姜繼森;;鏑摻雜納米鐵酸鉍的溶膠-凝膠法制備及其多鐵性質(zhì)的研究[A];中國化學會第十二屆膠體與界面化學會議論文摘要集[C];2009年
相關重要報紙文章 前3條
1 李東;納米鐵銹可根除水中砷污染[N];中國石油報;2006年
2 世杰;“神六”飛船有望用上“納米鐵紙”[N];中國有色金屬報;2005年
3 本報記者 張亮;納米鐵銹可根除水中砷污染[N];科技日報;2006年
相關博士學位論文 前10條
1 耿兵;殼聚糖穩(wěn)定納米鐵的制備與修復地表水中六價鉻污染的研究[D];南開大學;2009年
2 王薇;包覆型納米鐵的制備及用于地下水污染修復的實驗研究[D];南開大學;2008年
3 李勇超;功能化核殼型納米鐵的制備及修復地下水中六價鉻的研究[D];南開大學;2012年
4 肖仕麗;靜電紡零價納米鐵/聚合物材料的制備、表征及其環(huán)境修復應用[D];東華大學;2010年
5 熊平;旋轉(zhuǎn)磁場對血流中納米鐵核素定位作用的理論研究[D];中南大學;2009年
6 史嘉璐;含吡啶基螯合樹脂負載納米鐵系金屬選擇性還原硝酸鹽的特性和機理[D];南京大學;2015年
7 李鐵龍;納米鐵及鐵鈀復合材料的制備與修復地下水基礎研究[D];南開大學;2006年
8 張環(huán);負載型納米鐵銅二元金屬的合成與改性及其修復地下水中有機氯污染物的基礎研究[D];南開大學;2006年
9 郭萍;順磁納米鐵核素(PNINs)的物理靶向和富集特征研究[D];中南大學;2010年
10 柳聽義;包埋型納米鐵(NZVI)的制備及其去除廢水中鉻(Cr(Ⅵ))的研究[D];天津大學;2011年
相關碩士學位論文 前10條
1 代佳麗;納米鐵燒結活性碳的制備及性能研究[D];華南理工大學;2015年
2 王倩;修飾型納米鐵制備及其用于水體復合污染物去除研究[D];中國地質(zhì)大學(北京);2015年
3 肖佳楠;活性炭負載納米零價鐵的制備及其對難降解有機物去除性能的研究[D];山東大學;2015年
4 肖慶;納米鐵氧化礦物吸/脫附Cr(Ⅵ)的實驗研究[D];上海大學;2015年
5 侯春鳳;納米鐵與合成樹脂的表征及其活性探討[D];北京交通大學;2009年
6 李晨樺;膨潤土負載納米鐵去除地下水中六價鉻研究[D];中國地質(zhì)大學(北京);2012年
7 白雪梅;樹脂改性納米鐵修復鉛污染地下水的研究[D];吉林大學;2015年
8 陳學剛;納米鐵粒子/炭材料的制備和性能研究[D];北京化工大學;2001年
9 付明慶;納米鐵及負載型納米鐵去除硝酸鹽的試驗研究[D];沈陽建筑大學;2013年
10 王斐;納米鐵銅復合材料去除地下水中硝酸鹽的研究[D];中國海洋大學;2014年
,本文編號:2506493
本文鏈接:http://sikaile.net/kejilunwen/huanjinggongchenglunwen/2506493.html