天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 環(huán)境工程論文 >

洋河流域大氣多環(huán)芳烴的時(shí)空變異及長(zhǎng)距離遷移潛力分析

發(fā)布時(shí)間:2019-06-20 07:22
【摘要】:多環(huán)芳烴(Polycyclic Aromatic Hydrocarbons, PAHs)作為持久性有毒污染物(PTS)中的一類,具有毒性、生物聚積性、難降解性,并且可隨大氣長(zhǎng)距離遷移潛力。由于燃料的不完全燃燒而產(chǎn)生大量PAHs,其理化性質(zhì)決定了PAHs易被吸附在顆粒物表面。降塵作為大氣和其他環(huán)境物質(zhì)交換的一個(gè)重要環(huán)節(jié),吸附了一部分PAHs,在大氣環(huán)流控制下,共同進(jìn)行長(zhǎng)距離遷移,最終受重力影響降落至地表。大氣氣溶膠是懸浮在大氣中的直徑小于10微米的微粒子,這些粒子可吸附大量PAHs,且在大氣中停留時(shí)間較長(zhǎng),對(duì)空氣質(zhì)量、人體健康都產(chǎn)生較大影響。PAHs會(huì)隨著氣溶膠和降塵通過大氣傳輸和氣-土,氣-水交換進(jìn)入周邊環(huán)境,不僅對(duì)大氣環(huán)境構(gòu)成威脅,也對(duì)地面及地表水生態(tài)環(huán)境造成潛在威脅。由于水源地通常作為自然保護(hù)區(qū)、生態(tài)脆弱區(qū)以及工農(nóng)業(yè)用水尤其是居民飲用水安全保障地,因此周邊PAHs排放源是否會(huì)對(duì)水源地的生態(tài)環(huán)境帶來危害備受各方關(guān)注,成為PTS研究領(lǐng)域的一個(gè)新熱點(diǎn)。本研究以位于北京西北方向上風(fēng)向的洋河流域?yàn)檠芯繉?duì)象,不僅因?yàn)樵摿饔蚋沟?-張家口是我國北方重要的老工業(yè)基地、具有明顯的PAHs排放源特征,而且也因?yàn)樗潜本┲匾吹睾蜕鷳B(tài)保護(hù)屏障以及我國北方典型的農(nóng)牧交錯(cuò)帶和生態(tài)脆弱敏感區(qū),同時(shí)還是2022年冬奧會(huì)的申辦地,具有及重要的戰(zhàn)略地位。為了全面地反映洋河流域大氣中多環(huán)芳烴的污染現(xiàn)狀,首先通過對(duì)洋河流域工、農(nóng)業(yè)生產(chǎn)和居民生活等相關(guān)數(shù)據(jù)資料的收集和分析,估算了流域各行業(yè)、各縣市PAHs排放因子及單體排放量。與此同時(shí),本研究在洋河流域和北京地區(qū)設(shè)立了20個(gè)采樣點(diǎn),代表草原牧區(qū)、工業(yè)區(qū)、居民區(qū)、水源地及北京城區(qū),于2013年11月至2014年11月,以季度為單位進(jìn)行氣溶膠及降塵PAHs的采樣,分析大氣中PAHs的時(shí)空變異特征,并且通過運(yùn)用分子標(biāo)識(shí)物及主成分分析得出了大氣中PAHs的排放來源;運(yùn)用逸度方法構(gòu)建了洋河流域地區(qū)多介質(zhì)逸度遷移模型來模擬大氣中PAHs的遠(yuǎn)距離遷移潛力特征。研究結(jié)果表明:(1)從排放行業(yè)看,洋河流域大氣PAHs的重要排放源是煤炭燃燒源,洋河流域90%的煤炭消耗量產(chǎn)生了76%的PAHs,其中工業(yè)(含發(fā)電供熱)用煤量為6.1×103 t,產(chǎn)生的PAHs排放量為1.8×102 t;家庭用煤量為8.4×102 t,產(chǎn)生的PAHs排放量,為1.2×102t。秸稈燃燒源產(chǎn)生的PAHs僅次于煤炭燃燒源所產(chǎn)生的PAHs,在洋河流域6%的秸稈燃燒量產(chǎn)生了16%的PAHs。其余排放源所占比例不足10%。從排放區(qū)域看,宣化縣由于較快的經(jīng)濟(jì)發(fā)展程度和以煤炭為主的能源結(jié)構(gòu),產(chǎn)生的多環(huán)芳烴排放量最大,約為49 t;其次是興和縣,約為29 t,這與該地區(qū)的交通用油及家庭燃煤有關(guān);最少的是萬全縣,約為15 t。從排放譜看,低環(huán)(2-3環(huán)):PAHs的排放量接近于高環(huán)分子(4-6環(huán))的排放量。其中Nap的排放量最高,貢獻(xiàn)率達(dá)到21%,與重工業(yè)燃油、煤焦油或金屬冶煉有關(guān);Phe、Flu、Pyr和BaP排放貢獻(xiàn)率分別占12%、9.1%、8.4%和7.4%。(2)實(shí)驗(yàn)數(shù)據(jù)表明,洋河流域氣溶膠Σ16PAHs年排放量為655~1689ng/m3,年平均為308±139ng/m3。氣溶膠中Σ16PAHs含量主要以低環(huán)分子為主,是高環(huán)分子的1.3倍。洋河流域氣溶膠中Σ16PAHs平均質(zhì)量濃度最大值出現(xiàn)在1月,最小值出現(xiàn)在7月,4月和10月平均值相差不大。氣溶膠中Σ16PAHs濃度最低值位于興河縣和天鎮(zhèn)縣采樣點(diǎn),最高值出現(xiàn)在蟬窯村、北京城區(qū)教學(xué)植物園采樣點(diǎn)。地理環(huán)境、氣象條件的差異以及能源結(jié)構(gòu)不同等原因,導(dǎo)致了氣溶膠中Σ16PAHs的含量呈現(xiàn)出明顯的空間差異性,即工業(yè)區(qū)(1388 ng/m3)北京城區(qū)(1077 ng/m3)居民區(qū)(844n∥m3)水源地(708 ng/m3)草原背景點(diǎn)(374ng/m3)。(3)洋河流域降塵中Σ16PAHs的排放量為503-2593ng/m2,年平均值為1017±405ng/m2。降塵中Σ16PAHs的時(shí)間分布與氣溶膠中Σ16PAHs的時(shí)間分布呈現(xiàn)出一致性,均為Σ16PAHs平均質(zhì)量濃度最大值出現(xiàn)在1月,最小值出現(xiàn)在7月。從空間分布上看,降塵中Σ16PAHs濃度最低值位于北京城區(qū)的后白虎店采樣點(diǎn),最高值出現(xiàn)在蟬窯村采樣點(diǎn)。各功能區(qū)降塵中Σ16PAHs含量也存在較大差異。降塵Σ16PAHs年平均值呈現(xiàn)出工業(yè)區(qū)(1729 ng/m2)草原背景點(diǎn)(1566ng/m2)北京城區(qū)(1389ng/m2)居民區(qū)(1062 ng/m2)水源地(172 ng/m2)。(4)洋河流域年降塵量范圍為0.26-1.06g/m2,年平均值為0.49±0.22∥m2。春季(4月)降塵量達(dá)到最大,冬季(1月)降塵量最小。最高值出現(xiàn)在方家莊,約1.1g/m2,巴圖灣、東北新村年降塵量最少,均為0.27g/m2。從功能區(qū)劃分,年降塵量表現(xiàn)趨勢(shì)為:工業(yè)區(qū)(0.62g/m2)居民區(qū)(0.58g/m2)水源地(0.5g/m2)草原牧區(qū)(0.32∥m2)。(5)源解析分析得出,洋河流域大氣氣溶膠及降塵中PAHs的污染來源具有一致性,主要與煤及相關(guān)油類燃燒有關(guān),即煤炭和木材等生物質(zhì)燃燒、柴油燃燒廢氣及汽油引擎排放等。另外研究區(qū)域的污染與重工業(yè)金屬冶煉、煉鋼等工業(yè)生產(chǎn)也對(duì)高濃度PAHs具有一定的貢獻(xiàn)率。(6)16種PAHs中Pyr、Chr及Flu的傳輸距較遠(yuǎn),可能會(huì)污染北京的大氣環(huán)境。洋河流域大氣中16種PAHs的遷移距離為13 km (DBA)~712 km (Flu),平均值為163kmm,遷移潛力最小的是以DBA和BghiP為主的5-6環(huán)芳烴;遷移潛力最大的是以Flu為主的4環(huán)芳烴。持久性為0.33 d (Ace)~907 d (BaP);平均值為144d。大部分多環(huán)芳烴表現(xiàn)為近源污染(220km),只對(duì)張家口地區(qū)產(chǎn)生污染,而Pyr、Chr及Flu的傳輸距離大于500 km,很可能會(huì)對(duì)污染北京的大氣環(huán)境。
[Abstract]:Polycyclic aromatic hydrocarbons (PAHs), as a class of persistent toxic pollutants (PTS), have the potential for toxicity, bioaccumulation, hard-to-degrade, and long-distance migration of the atmosphere. Due to the incomplete combustion of the fuel, a large amount of PAHs is generated, and the physical and chemical properties of the PAHs determine that the PAHs are easy to be adsorbed on the surface of the particulate matter. Dust fall is an important part of the exchange of atmosphere and other environmental substances, and a part of PAHs is adsorbed, under the control of atmospheric circulation, the long-distance migration is carried out together, and finally the dust fall to the surface by the influence of gravity. The atmospheric aerosol is a fine particle suspended in the atmosphere with a diameter of less than 10 microns. The particles can adsorb a large amount of PAHs and have a long residence time in the atmosphere, and have a great effect on air quality and human health. As the aerosol and dust fall through the atmosphere, the air-water exchange enters the surrounding environment, which is not only a threat to the atmospheric environment but also a potential threat to the surface and surface water ecological environment. Since the water source is usually used as a natural reserve, the ecological fragile area and the industrial and agricultural water, in particular the residents' drinking water safety, the surrounding PAHs emission sources will be of great concern to the ecological environment of the water source, and become a new hot spot in the research field of PTS. The study is based on the Yanghe River basin, which is located in the northwest of Beijing, not only because of the hinterland of the basin-Zhangjiakou is an important old industrial base in the northern part of China, and has obvious characteristics of PAHs emission sources. But also because it is an important water source and ecological protection barrier in Beijing, as well as the typical agro-pastoral ecotone and ecological fragile sensitive area in the north of China, and it is also the sponsor of the 2022 Winter Olympic Games, with and important strategic position. In order to reflect the present situation of the pollution of the polycyclic aromatic hydrocarbons in the atmosphere of the Yanghe river basin, the emission factors of PAHs and the amount of the monomer in each industry and each county of the basin are estimated through the collection and analysis of the relevant data such as the river basin, the agricultural production and the resident's life. At the same time, the study has set up 20 sampling points in the Yanghe River Basin and Beijing, and represents the sampling of the aerosol and dust-reducing PAHs in the area of the grassland, the industrial area, the residential area, the water source and the Beijing urban area, from November 2013 to November 2014, In this paper, the space-time variation of PAHs in the atmosphere is analyzed, and the emission source of PAHs in the atmosphere is obtained by using the molecular marker and the principal component analysis. The results show that: (1) From the emission industry, the important emission source of the atmospheric PAHs in the Yanghe river basin is the coal combustion source, and the coal consumption of 90% of the Yanghe river basin is about 76% of the PAHs, of which the coal consumption of the industry (including power generation and heat supply) is 6.1-103t, and the emission of PAHs is 1.8-102t; The coal consumption of the household is 8.4 to 102t, and the generated PAHs emission amount is 1.2 to 102t. The PAHs produced by the straw combustion source are second only to the PAHs produced by the coal combustion source, and 6% of the straw burning amount in the Yanghe River basin produces 16% of PAHs. The proportion of the remaining sources of emissions is less than 10 per cent. From the emission area, Xuanhua County, due to the rapid economic development and the coal-based energy structure, has the largest amount of polycyclic aromatic hydrocarbons, which is about 49t; the second is Xingand County, about 29t, which is related to the transportation oil in the area and the coal burning in the household; the least is the whole county, From the emission spectrum, the low-ring (2-3 ring): PAHs emission is close to the emission of the high-ring molecule (4-6 ring). The emission of Nap is the highest, the contribution rate is 21%, which is related to heavy industry fuel, coal tar or metal smelting, and the contribution rate of Phe, Flu, Pyr and BaP accounts for 12%, 9.1%, 8.4% and 7.4%, respectively. (2) The experimental data show that the annual discharge of the aerosol in the Yanghe River Basin is 655 ~ 1689ng/ m3, and the annual average is 308 ~ 139ng/ m3. The content of the 16-PAHs in the aerosol is mainly low-ring and 1.3-fold higher than that of the high-ring molecule. The mean mass concentration of the 16-PAHs in the aerosol of the Yanghe river basin appeared in January, and the minimum value appeared in July, April and October. The lowest value of the concentration of the 16-PAHs in the aerosol is located at the sampling point of Xinghe County and Tianzhen County, and the highest value appears at the sampling point of the cicada's kiln village and the Beijing urban area. The difference of the geographical environment, the meteorological conditions and the different energy structure resulted in a significant spatial difference in the content of the 16PAHs in the aerosol, that is, the background point of the grassland in the residential area (1077ng/ m3) of the industrial area (1388ng/ m3) (1077ng/ m3) and the background point of the grassland in the area of 708ng/ m3) (374ng/ m3). (3) The emission of 16-PAHs in the dustfall of the Yanghe River basin is 503-2593 ng/ m2, and the annual average value is 1017-405ng/ m2. The time distribution of the 16-PAHs in the dust and the time distribution of the 16-PAHs in the aerosol show the consistency, and the mean value of the average mass concentration of the 16-PAHs in the dust is in January, and the minimum value is in July. From the spatial distribution, the lowest value of the 16-PAHs concentration in the dust fall is located at the sampling point of the post-white tiger store in the Beijing urban area, and the highest value appears at the sampling point of the cicada. There is also a great difference in the content of 16PAHs in the dust falling of each functional area. The annual mean value of the 16-PAHs in the dust-falling body shows the background point of the grassland in the industrial area (1729 ng/ m2) (1566 ng/ m2) and the water source area (1062 ng/ m2) of the residential area (1062 ng/ m2) in the urban area of Beijing (1389 ng/ m2). (4) The annual dust fall in the Yanghe River basin is in the range of 0.26-1.06 g/ m2, and the annual average value is 0.49/ 0.22/ m2. The dust fall in spring (April) is the largest, and the dust fall in winter (January) is the smallest. The highest value appears in Fangjiaozhuang, about 1.1 g/ m2, Batu Bay and the New Village in the Northeast of China with a minimum dust fall of 0.27 g/ m2. From the functional area, the annual dust fall is shown as follows: the area of the industrial area (0.62 g/ m2) (0.58g/ m2) (0.58g/ m2) of the grassland area (0.5g/ m2), and the pastoral area (0.32/ m2). (5) The source analysis and analysis show that the pollution sources of PAHs in the atmospheric aerosol and dust fall of the Yanghe River Basin are consistent, mainly related to the combustion of coal and related oil, namely, the combustion of biomass such as coal and wood, the combustion of diesel oil and the emission of gasoline engine, etc. In addition, the pollution of the research area and the heavy industry metal smelting, steel-making and other industrial production also have a certain contribution rate to the high-concentration PAHs. (6) The transmission distance of Pyr, Chr and Flu in 16 kinds of PAHs may pollute the atmospheric environment in Beijing. The migration distance of 16 kinds of PAHs in the atmosphere of the Yanghe River Basin is 13km (DBA) ~ 712km (Flu), the average value is 163 kmm, and the migration potential is the smallest 5-6-ring aromatic hydrocarbon with DBA and BghiP; the most potential for the migration is the 4-ring aromatic hydrocarbon, which is mainly Flu. The persistence was 0.33 d (Ace) to 907d (BaP); the average was 144d. Most of the polycyclic aromatic hydrocarbons appear to be near-source pollution (220 km), which only pollute the Zhangjiakou area, while the transmission distance of Pyr, Chr and Flu is more than 500km, which is likely to pollute the air environment in Beijing.
【學(xué)位授予單位】:蘭州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:X51

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 李秋歌;趙欣;LIAN;高士祥;王格慧;王連生;;南京大氣中多環(huán)芳烴的相分布[J];環(huán)境科學(xué)與技術(shù);2007年04期

2 唐楊;徐志方;韓貴琳;;北京及其北部地區(qū)大氣降塵時(shí)空分布特征[J];環(huán)境科學(xué)與技術(shù);2011年02期

3 王偉;;鞍山市總懸浮顆粒物中多環(huán)芳烴分布特征[J];環(huán)境科學(xué)與管理;2013年01期

4 李軍,張干,祁士華;廣州市大氣中多環(huán)芳烴分布特征、季節(jié)變化及其影響因素[J];環(huán)境科學(xué);2004年03期

5 蘇都爾·克熱木拉;伊麗米熱·阿布達(dá)力木;迪麗努爾·塔力甫;;烏魯木齊市采暖期大氣PM_(2.5-10)、PM_(2.5)中重金屬和多環(huán)芳烴的分布及其相關(guān)性[J];環(huán)境化學(xué);2013年04期

6 李淑賢;陸洪軍;胡國成;邱洪斌;王嘉淇;沙靖全;劉鳳華;孫廣臣;;佳木斯郊區(qū)冬季大氣PM2.5中多環(huán)芳烴的污染特征和健康風(fēng)險(xiǎn)評(píng)價(jià)[J];環(huán)境與健康雜志;2013年09期

7 高佳佳;羅維;奚曉霞;;首都水源地——洋河流域人為源多環(huán)芳烴(PAHs)排放清單估算及其影響分析[J];環(huán)境科學(xué);2014年12期

8 黃云碧;周家斌;王鐵冠;;北京地區(qū)大氣顆粒物中不同功能區(qū)多環(huán)芳烴的分布特征[J];燃料化學(xué)學(xué)報(bào);2007年02期

9 卜慶偉;張枝煥;夏星輝;;分子標(biāo)志物參數(shù)在識(shí)別土壤多環(huán)芳烴(PAHs)來源中的應(yīng)用[J];土壤通報(bào);2008年05期

10 張春輝;郭建陽;石順權(quán);張亮;吳永貴;李江;楊少博;;貴陽市主干道降塵中的多環(huán)芳烴及其健康風(fēng)險(xiǎn)評(píng)估[J];生態(tài)學(xué)雜志;2014年10期

相關(guān)博士學(xué)位論文 前1條

1 馬英歌;多環(huán)芳烴物理化學(xué)性質(zhì)的確定及其在逸度模型和上海典型環(huán)境研究中的應(yīng)用[D];上海交通大學(xué);2009年

相關(guān)碩士學(xué)位論文 前3條

1 張婷婷;青島市空氣中多環(huán)芳烴的污染狀況與源解析研究[D];中國海洋大學(xué);2007年

2 鄧瓊;成都東郊大氣顆粒物(TSP)中多環(huán)芳烴(PAHs)的污染研究[D];成都理工大學(xué);2010年

3 柳杜娟;2010上海世博會(huì)期間大氣細(xì)粒子中硝基多環(huán)芳烴的研究與比較[D];上海大學(xué);2013年



本文編號(hào):2503039

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huanjinggongchenglunwen/2503039.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶8a7ae***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com