樹木吸收和富集重金屬規(guī)律的研究
[Abstract]:In this paper, by means of ICP-OES, the contents of heavy metals, zinc and copper in different parts of a mining area of Tongling were analyzed by means of ICP-OES, the contents of zinc and copper in different parts of Poulus simonii Carr.var.przewalskii (Maxim.) H. L. Yang) and Paulownia tomentosa (Thunb.) Steud were analyzed. The characteristics of the absorption and distribution of the heavy metal salt of poplar are studied, and the basis and data support for the application of the poplar to the treatment of soil polluted by the soil are provided. The results show that the content of iron, zinc and copper in the soil of the mining area exceeds the local soil background value, and the content of the heavy metal in the soil near the filling area of the mining area decreases with the increase of the depth of the soil. The longitudinal distribution of heavy metal zinc in the interior of the paulownia is the tree trunk of the root of the leaves; the longitudinal distribution of the copper in the interior of the paulownia is the tree trunk of the tree root; the distribution of the heavy metal zinc in the organs of the paulownia is the branch of the branch of the tree root. The longitudinal distribution of the heavy metal zinc in the poplar is the tree root of the branch of the leaves, the longitudinal distribution of the copper in the poplar is the tree trunk of the tree root, and the distribution of the heavy metal zinc in the body of the poplar is the tree trunk of the tree root. The content of the heavy metal salt in the trunk of the poplar is decreased with the increase of the height, and the content of the heavy metal salt near the root of the tree root is the highest. In the experiment of pot experiment, we concluded that the content of the tree trunk is the highest in the soil with the same concentration, and the content of the water in the trunk is lower with the increase of the height, and the content of the top of the trunk is the lowest. The content of the same elements in different organs of the poplar is different, but the content of the three heavy metals in different parts of the trunk of the poplar is different, the distribution law of the longitudinal direction is basically the same, and the content of the heavy metal is gradually reduced with the increase of the longitudinal height of the trunk. The radial distribution of heavy metal in the interior of the poplar is the bark core material. The result of the pot experiment is not exactly the same as that of the bark. The radial distribution of the bark concentration is the core material of the bark. In the two experiments, the content of the bark in the bark is always the highest. The content of the three heavy metals in the trunk of the poplar tree is as follows: the content of the three heavy metals in the trunk of the poplar is the same as that of the zinc and the copper, and the concentration of the heavy metal in the same part of the tree is very different due to the type of the heavy metal. The enrichment ability of the tree to the same heavy metal element has a significant difference due to the different species and parts of the tree. The enrichment factor of each part of the poplar is more than 0.12, the enrichment factor of the leaves to the leaf is more than 0.5, and the enrichment factor of the leaves in the leaves is up to 878.26 mg/ kg. The enrichment factor of the internal organs of Paulownia was lower than that of 0.04, the content of the enrichment of the branch was the lowest, the enrichment factor was 0.03, and the content of selenium was 0.092 mg/ kg. The concentration factor of zinc in all parts of poplar is more than 0.8, and the enrichment factor of paulownia to zinc is less than 0.1, which is far lower than that of poplar. And the enrichment factor of the poplar to the copper is more than 0.1, and the enrichment factor of each part of the paulownia to the copper is greater than 0.4. The enrichment ability of poplar to iron and zinc is stronger than that of Paulownia, and the enrichment ability of the copper is weaker than that of Paulownia. The concentration of the poplar in the soil can be restrained by the enrichment ability of the heavy metal salt of the poplar. In the pot experiment, the enrichment factor of the trees in the blank control reaches more than 10, and the accumulation coefficient of the poplar is gradually reduced with the increase of the concentration of the soil applied in the soil. When the content of the soil in the soil reaches 50 mg/ kg, the enrichment factor of the poplar in the soil is obviously reduced, and the enrichment factor of the poplar to the soil reaches below 0.5 when the soil moisture content reaches 100 mg/ kg. The transport capacity of different trees to different heavy metals is also different, and the transport coefficient of paulownia to copper is higher than 1, while the transport coefficient of the poplar to copper is lower than 0.35, and the capacity of the paulownia to transfer the copper from the root to the rest is about 3 times that of the poplar. The transport coefficient of zinc in all parts of poplar was higher than that of 0.9, and the transport coefficient of zinc in all parts of Paulownia was higher than that of 0.3, while the transport capacity of Paulownia was stronger than that of poplar, but the transport capacity of zinc was lower than that of poplar. The transport coefficient of the poplar in each part of the poplar is higher than 0.5, while the transport coefficient of the paulownia to the poplar is lower than 0.25, and the migration capacity of the heavy metal salt in the poplar is 2 times that of the paulownia. The relationship between the transport factors of different heavy metals in the leaves of the pajatropha curcas leaves is a zinc-copper-copper alloy, and the relationship between the transport coefficients of the different heavy metals in the poplar leaves is zinc and copper. The migration of zinc in the leaves of the poplar and paulownia is the highest, the transfer capacity of the copper in the poplar is stronger than that of the paulownia, and the migration capacity of the copper in the paulownia is higher than that of the poplar. In the experiment of pot experiment, with the change of the concentration of the soil applied in the soil, the transfer coefficient of the poplar between the samples is not great, and when the concentration of the water applied in the soil reaches 5 mg/ kg, the transport coefficient of the trunk part of the poplar is floating between 0.7 and 1.5. When the concentration of the soil in the soil reaches 100 mg/ kg, the transport coefficient of the poplar is still between 0.7 and 1.0, and the increase of the concentration of the water in the soil has no obvious effect on the ability of the poplar to transfer. In general, the poplar is more suitable for use in the process of treating and polluting the soil than the paulownia.
【學位授予單位】:安徽農(nóng)業(yè)大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:X53;X173
【相似文獻】
相關期刊論文 前10條
1 汪晶晶;;水稻重金屬富集規(guī)律研究[J];農(nóng)業(yè)災害研究;2012年06期
2 李雙文;;重金屬進入人體的渠道[J];百科知識;2011年01期
3 袁旭音,陶于祥,王潤華,姜月華,王愛華;湖州市不同土壤重金屬的污染現(xiàn)狀[J];上海地質(zhì);2002年03期
4 胡省英,冉偉彥,范宏瑞;土壤—作物系統(tǒng)中重金屬元素的地球化學行為[J];地質(zhì)與勘探;2003年05期
5 陳芳,董元華,安瓊,欽繩武;長期肥料定位試驗條件下土壤中重金屬的含量變化[J];土壤;2005年03期
6 謝寶貴,劉潔玉;重金屬在三種食用菌中的累積及對其生長的影響[J];中國食用菌;2005年02期
7 薛艷,沈振國,周東美;蔬菜對土壤重金屬吸收的差異與機理[J];土壤;2005年01期
8 張煒鵬;陳金林;黃全能;王擎運;趙好;薛丹;;南方主要綠化樹種對重金屬的積累特性[J];南京林業(yè)大學學報(自然科學版);2007年05期
9 孫嘉龍;肖唐付;周連碧;何立斌;寧增平;李航;彭景權;;微生物與重金屬的相互作用機理研究進展[J];地球與環(huán)境;2007年04期
10 劉曉輝;呂憲國;劉惠清;;溝谷地不同植被下土壤重金屬縱向分異研究[J];環(huán)境科學;2007年12期
相關會議論文 前10條
1 何文珊;陸健健;;遷徙濱鷸對重金屬的富集及其環(huán)境檢測意義[A];中國動物科學研究——中國動物學會第十四屆會員代表大會及中國動物學會65周年年會論文集[C];1999年
2 褚武英;俞膺浩;袁維佳;;淡水動物體內(nèi)重金屬的生態(tài)化學特征[A];動物學專輯——上海市動物學會2002年年會論文集[C];2002年
3 張文英;;福州市蔬菜地重金屬污染狀況調(diào)查[A];食品安全的理論與實踐——福建省科協(xié)第四屆學術年會“食品安全與農(nóng)民增收”分會場暨福建省農(nóng)學會第五屆青年學術年會論文集[C];2004年
4 李緒平;吳塹虹;戴塔根;;地貌及風向對長沙-株洲-湘潭地區(qū)土壤重金屬富集的影響[A];中國礦物巖石地球化學學會第11屆學術年會論文集[C];2007年
5 高潔;劉文英;陳衛(wèi)軍;;電鍍污染區(qū)植物對復合重金屬的富集、轉移和修復潛力[A];十一五農(nóng)業(yè)環(huán)境研究回顧與展望——第四屆全國農(nóng)業(yè)環(huán)境科學學術研討會論文集[C];2011年
6 羅永婷;錢忠英;盛春;李新國;;上海地區(qū)幾種淡水動物體內(nèi)重金屬的富集[A];2008年上海市動物學會學術會議論文集(二)[C];2008年
7 李薇;肖翔林;吳文如;;藥用動、植物重金屬富集作用的利與弊[A];2007年中華中醫(yī)藥學會第八屆中藥鑒定學術研討會、2007年中國中西醫(yī)結合學會中藥專業(yè)委員會全國中藥學術研討會論文集[C];2007年
8 楊剛;伍鈞;;甘洛廢棄鉛鋅礦區(qū)幾種草本植物的重金屬耐性研究[A];四川省第十次環(huán)境監(jiān)測學術交流會論文集[C];2005年
9 王愛霞;張敏;方炎明;;重金屬在南京城市樹木中的富積及大氣污染評價[A];中國植物學會植物結構與生殖生物學專業(yè)委員會、江蘇省植物學會2007年學術年會學術報告及研究論文集[C];2007年
10 張乃明;李陽紅;;污水灌區(qū)土壤-作物系統(tǒng)對三種重金屬吸收富集特征研究[A];首屆全國農(nóng)業(yè)環(huán)境科學學術研討會論文集[C];2005年
相關重要報紙文章 前5條
1 張芳;成都經(jīng)濟區(qū)生態(tài)研究獲多項重要成果[N];中國礦業(yè)報;2007年
2 范玲 劉應平;長江水質(zhì)受流域內(nèi)特殊地質(zhì)體影響明顯[N];地質(zhì)勘查導報;2007年
3 本報記者 康傳義 陳艷 實習生 趙佳 陳歡;我們的土地被污染了嗎?[N];陜西日報;2011年
4 本報記者 童光來;蜈蚣草拯救“中毒”土壤[N];北京科技報;2004年
5 本報記者 鄭榮 羅會江 本報特約記者 金光;農(nóng)業(yè)地質(zhì)開路 品牌農(nóng)業(yè)強省[N];地質(zhì)勘查導報;2009年
相關博士學位論文 前10條
1 康薇;微生物—蓖麻聯(lián)合修復銅污染土壤的機理與應用研究[D];中國地質(zhì)大學;2014年
2 潘峗;我國生活垃圾焚燒飛灰毒性行為及其資源化利用過程的風險評估[D];上海大學;2015年
3 萬甜;超聲溶胞污泥回流-SBR工藝典型重金屬再分配及累積的研究[D];哈爾濱工業(yè)大學;2014年
4 楊婷;微生物細胞表面的化學/基因改性調(diào)控用于重金屬分離及(形態(tài))分析[D];東北大學;2013年
5 楊玉榮;叢枝菌根真菌(AMF)提高植物修復土壤重金屬Pb污染的作用機制[D];西北農(nóng)林科技大學;2015年
6 劉小雪;松花江干流沉積物中重金屬和多環(huán)芳烴污染特征[D];吉林大學;2016年
7 張海燕;大蒜重金屬抗性基因的克隆及其功能分析[D];中國科學院研究生院(植物研究所);2005年
8 李其林;重慶市土壤—作物系統(tǒng)重金屬特征研究[D];西南大學;2008年
9 薛紅喜;黃河包頭段沉積物重金屬吸附機制及污染生態(tài)學研究[D];內(nèi)蒙古大學;2007年
10 陸引罡;鉛鎳富集植物的篩選及其根際微生態(tài)特征[D];西南大學;2006年
相關碩士學位論文 前10條
1 宋昱璇;滇池疏浚底泥中重金屬在四種蔬菜中的累積效應及其風險評價[D];昆明理工大學;2015年
2 高麗潔;海帶內(nèi)非蛋白巰基化合物的檢測分析及重金屬誘導轉化研究[D];中國地質(zhì)大學(北京);2015年
3 侯運楠;重金屬抗性菌的生物吸附特性及抗性基因CzcA的克隆表達[D];西北農(nóng)林科技大學;2015年
4 王毓秀;電廠燃煤煙塵成分譜的研究及重金屬風險評價[D];太原理工大學;2016年
5 李曉旭;土壤銅、鋅、鉛污染對上海草本植物群落的影響[D];華東師范大學;2016年
6 丁玲;電動增強技術修復重金屬Cd(Ⅱ)污染土壤的研究[D];廣東工業(yè)大學;2016年
7 王秋營;富硒紅壤中硒與重金屬關系及作物對硒的吸收規(guī)律研究[D];福建農(nóng)林大學;2016年
8 范玉強;我國部分煤中重金屬含量、賦存及排放控制研究[D];遼寧科技大學;2016年
9 葛慧敏;泰安市大氣PM_(2.5)中重金屬的檢測及污染特征分析[D];山東大學;2016年
10 趙芙;厭氧消化污泥動電處理對土壤及玉米植株重金屬累積的影響[D];東北農(nóng)業(yè)大學;2016年
,本文編號:2501179
本文鏈接:http://sikaile.net/kejilunwen/huanjinggongchenglunwen/2501179.html