基于衛(wèi)星和AERONET觀測的北京地區(qū)氣溶膠光學(xué)特性研究
[Abstract]:With the development of economy and the acceleration of the process of urbanization, the problem of air pollution in Beijing and its surrounding area is becoming more and more serious, and has a serious impact on the living environment of human. Therefore, it is of vital importance to study the long-term aerosol observation in Beijing and to know the optical characteristics of the aerosol in the atmosphere of air pollution. In this paper, the optical properties of the aerosol in Beijing area are studied by using the interactive data language IDL (Interactive Data Language) processing data in combination with the MODIS data, the CALIPSO data and the AERONET observation network data. First of all, the typical sand-dust weather in March of 2013 is analyzed, and the CALLIPSO and MODIS data are adopted to distinguish the aerosol and the cloud according to the attenuation of the 532 nm wavelength and the SCA method of the two-wavelength signal is used to distinguish the aerosol and the cloud, and then a CLIM method is adopted to further identify the dust aerosol, The results of sand-dust identification are given. The model of HYSPLIT and NAAPS is used to simulate the dust source and the transmission process, and the optical thickness of the aerosol is initially inverted by the double-wavelength inversion method. The optical characteristics of the dust aerosol are then inverted by using the solar direct radiation data of AERONET, and the optical characteristics of the dust aerosol in the sand and dust weather in Beijing area from 2001 to 2013 are analyzed. finally, the optical thickness of the aerosol in the Beijing area is inverted by using the solar direct radiation data of the AERONET, and the optical characteristic parameters such as a single scattering albedo, a complex refraction index and a volume spectrum distribution of the aerosol are inverted by using the sky scattered radiation data, Statistical analysis of the seasonal variation of aerosol optical properties in Beijing from 2002 to 2013. The results are as follows: (1) The spatial distribution of the aerosol and the cloud and the distribution height of the aerosol and the cloud can be obtained from the spatial distribution diagram of each optical characteristic parameter; and the aerosol and the cloud can be better distinguished and the dust aerosol can be identified by combining the SCA and the CLIM method. (2) The results of the analysis of the typical sand-dust weather from March 9 to 11,2013 show that the depolarizing ratio of the dust aerosol is between 0.1 and 0.4, the color ratio is usually more than 0.3, and the distribution height of the dust is generally less than 4km. By using the HYSPLIT model and the NAAPS aerosol model, it is found that this dust originated from the south Xinjiang basin and the central and western part of Inner Mongolia, and is in accordance with the west-west path type in the sand-dust weather transmission path in China. In the process of sand transport, the dust weather has a significant impact on the air quality in Beijing, and the main pollutants are converted from PM2.5 to PM10. In this paper, the optical thickness of the dust aerosol in the dust and dust in Beijing area due to the dust storm is obtained by the double-wavelength iterative inversion method, which is 0.534 and 0.621, respectively. (3) The results of the study on the dust weather in Beijing from 2001 to 2013: the influence of the dust particles during the Beijing dust weather, the large value of the aerosol optical thickness, the decrease with the increase of the wavelength, the maximum at the wavelength of 440 nm and the average value of about 1.2; The aerosol Angstrom wavelength index is 97.62%, which is below 0.7, indicating that the particles are large during the sand-dust weather in Beijing; the single-scattering albedo increases with the increase of the wavelength, the average value is about 0.93; the real part of the complex refractive index is the largest at the wavelength of 675 nm, and the average is about 1.55, the average value of the total asymmetry factor is about 0.72; the average value of the total asymmetry factor is about 0.72; the aerosol particle spectrum type is a bimodal distribution during the dust weather in the beijing area, and the peak value of the aerosol particle is increased with the increase of the optical thickness, The average radius of the coarse-mode particles is about 2.6. m u.m. The dust weather in Beijing area is mainly concentrated in spring and winter, and the number of days affected by the sand-dust weather in Beijing is decreasing. (4) The optical characteristics of the aerosol in Beijing have a strong seasonal change: the average of the aerosol optical thickness in the spring and winter is greater than that in the summer and autumn; the Angstrom index in Beijing is smaller in spring and in winter, and the average value of the Angstrom index in the spring is the smallest (0.93). This is mainly because the spring and winter of Beijing are the multi-season of sand-dust weather, and there is a large number of coarse sand-dust particles, while the summer and fall are mainly artificial pollution-type fine-particle aerosol, so it is relatively large, which is 1.21 and 1.12, respectively. The precipitation in Beijing is relatively small in spring and winter, and the optical thickness of the aerosol in summer and autumn is relatively small. It is indicated that the precipitation has a certain cleaning effect on the atmosphere. The distribution of the aerosol volume in the Beijing area shows a significant seasonal change, with fine-mode particles as the main in the summer and larger than the volume concentration in other seasons; the spring is mainly characterized by coarse-mode particles due to the influence of the dust-coarse-particle aerosol, The volume concentration of the coarse-modal particles in the spring is the largest (0.13. mu.m-m3. mu.m-2), which is about 2.5 times the volume concentration of the fine-mode particles. (5) In the climate and radiation model, the mean value of the single-scattering albedo in Beijing is 0.90, 0.92, 0.88, 0.86, and the asymmetry factor is 0.66 in the four bands of 440,675,870 and 1020 nm, respectively. The real part of the complex refractive index is 1.52 and the imaginary part is 0.0118.
【學(xué)位授予單位】:安徽農(nóng)業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:X513
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 黃成榮;;氣溶膠:并不是我們看到的那樣簡單[J];沙漠與綠洲氣象;2009年03期
2 丁玨;王慶濤;劉義;應(yīng)夢侃;;霧環(huán)境二次氣溶膠生長過程的數(shù)值研究[J];力學(xué)學(xué)報;2013年02期
3 倪守邦;;國外氣溶膠發(fā)生裝置研制概況[J];冶金安全;1982年01期
4 章小平,王立治,周明煜,楊紹晉,錢琴芳;秋冬季節(jié)北京地區(qū)氣溶膠物理特性的垂直分布規(guī)律[J];科學(xué)通報;1983年05期
5 胡秀清,張玉香,張廣順,黃意玢,王永寬;中國遙感衛(wèi)星輻射校正場氣溶膠光學(xué)特性觀測研究[J];應(yīng)用氣象學(xué)報;2001年03期
6 李霞,楊青,吳彥;烏魯木齊地區(qū)雪和雨對氣溶膠濕清除能力的比較研究[J];中國沙漠;2003年05期
7 江剛;植物產(chǎn)生的異戊二烯可在大氣中形成二次有機氣溶膠[J];中國環(huán)境科學(xué);2004年03期
8 胡睿,方黎,鄭海洋,朱元,張玉瑩,孔祥和,周留柱,顧學(xué)軍,張為俊,鮑健,熊魯源;若干芳香族化合物氣溶膠單粒子的在線測量[J];量子電子學(xué)報;2005年03期
9 趙海波;鄭楚光;;水滴清除氣溶膠過程的隨機算法和數(shù)值模擬[J];應(yīng)用數(shù)學(xué)和力學(xué);2006年10期
10 徐建中;孫俊英;秦大河;任賈文;王曉香;;中國第二次北極科學(xué)考察沿線氣溶膠可溶性離子分布特征和來源[J];環(huán)境科學(xué)學(xué)報;2007年09期
相關(guān)會議論文 前10條
1 高軍;張旭;;室內(nèi)氣溶膠稀疏顆粒相動力學(xué)判定依據(jù)[A];全國暖通空調(diào)制冷2010年學(xué)術(shù)年會論文集[C];2010年
2 李霞;楊青;吳彥;;烏魯木齊地區(qū)雨雪對氣溶膠濕清除能力的比較研究[A];新世紀(jì)氣象科技創(chuàng)新與大氣科學(xué)發(fā)展——中國氣象學(xué)會2003年年會“大氣氣溶膠及其對氣候環(huán)境的影響”分會論文集[C];2003年
3 王亞強;張小曳;曹軍驥;王丹;;中國西北粉塵源區(qū)氣溶膠中碳酸鹽穩(wěn)定同位素組成及源區(qū)示蹤意義[A];中國顆粒學(xué)會2004年年會暨海峽兩岸顆粒技術(shù)研討會會議文集[C];2004年
4 張興贏;莊國順;陳建民;吳洪波;王曉;薛華欣;;二氧化硫在礦物氣溶膠顆粒物表面的復(fù)相反應(yīng)研究[A];第二屆全國環(huán)境化學(xué)學(xué)術(shù)報告會論文集[C];2004年
5 于軍營;仝海杰;張韞宏;;丙三醇/氯化鈉/水混合氣溶膠的結(jié)構(gòu)隨濕度變化的紅外光譜研究[A];第十五屆全國光散射學(xué)術(shù)會議論文摘要集[C];2009年
6 楊紅龍;李磊;盧超;陳星登;劉愛明;;深圳城市氣溶膠物理光學(xué)特性的觀測研究[A];城市氣象論壇(2012年)·城市與氣候變化論文集[C];2012年
7 劉暢;劉永春;馬慶鑫;馬金珠;賀泓;楚碧武;李俊華;郝吉明;;礦質(zhì)氣溶膠顆粒的在線制備及其在煙霧箱研究中的應(yīng)用[A];第六屆全國環(huán)境化學(xué)大會暨環(huán)境科學(xué)儀器與分析儀器展覽會摘要集[C];2011年
8 宗鵬程;魏曉奕;;不同混合方案對氣溶膠輻射特性的影響[A];第六屆長三角氣象科技論壇論文集[C];2009年
9 孫玉穩(wěn);董曉波;齊作輝;姜巖;趙志軍;;不同天氣條件下石家莊市區(qū)氣溶膠分布研究[A];第28屆中國氣象學(xué)會年會——S8大氣成分與天氣氣候變化的聯(lián)系[C];2011年
10 李家驊;丁玨;翁培奮;劉麗穎;;霧霾天氣氣溶膠顆粒物動力學(xué)特性的研究[A];中國力學(xué)學(xué)會學(xué)術(shù)大會'2009論文摘要集[C];2009年
相關(guān)重要報紙文章 前4條
1 福州肺科醫(yī)院呼吸內(nèi)科副主任醫(yī)師 翁恒;鹽氣溶膠吸入治療呼吸道疾病[N];健康報;2009年
2 采訪人 本報記者 賈敏;氣溶膠的“冷暖面孔”[N];中國氣象報;2013年
3 汪安璞;尋找控制污染的利器[N];科技日報;2002年
4 本報記者 姬鋼;空氣除菌消毒設(shè)備蜂擁入市[N];中國環(huán)境報;2003年
相關(guān)博士學(xué)位論文 前10條
1 陸曉慧;新型常壓軟電離技術(shù)及其在有機氣溶膠質(zhì)譜分析中的應(yīng)用[D];復(fù)旦大學(xué);2014年
2 王富;中國東部地區(qū)氣溶膠—云相互作用衛(wèi)星遙感建模研究[D];電子科技大學(xué);2015年
3 汪陽;鎂鹽氣溶膠吸濕性動力學(xué)與熱力學(xué)的自發(fā)與受激拉曼譜學(xué)研究[D];北京理工大學(xué);2015年
4 鐘蕾;H9N2禽流感病毒在雞群中氣溶膠傳播的分子機制及PA-X蛋白在H9N2病毒中功能初探[D];揚州大學(xué);2014年
5 張舒婷;南京霧、霾及其轉(zhuǎn)化特征觀測研究[D];南京信息工程大學(xué);2015年
6 鄧高峰;室內(nèi)空氣顆粒污染物檢測與控制技術(shù)研究[D];北京化工大學(xué);2016年
7 李黎;天然源二次氣溶膠組成、分布以及來源研究[D];上海大學(xué);2009年
8 康輝;生物成因氣溶膠的時空特征、來源及其環(huán)境意義:[D];中國科學(xué)技術(shù)大學(xué);2012年
9 許萬智;北京地區(qū)氣溶膠光學(xué)特性與輻射效應(yīng)的觀測研究[D];中國氣象科學(xué)研究院;2012年
10 馬良;氣溶膠顆粒逆排旋流去除原理與應(yīng)用[D];華東理工大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 魏邦海;氣溶膠和冰水兩相粒子的散射特性[D];南京信息工程大學(xué);2015年
2 祝存兄;南京北郊多功能激光雷達(dá)邊界層氣溶膠觀測[D];南京信息工程大學(xué);2015年
3 王婭冰;大氣層中超細(xì)氣溶膠團簇生長的熱力學(xué)性質(zhì)研究[D];南京信息工程大學(xué);2015年
4 李琦;南京市區(qū)夏季氣溶膠吸濕活化特性及PM_(2.5)成分的分析研究[D];南京信息工程大學(xué);2015年
5 齊海;基于衛(wèi)星遙感數(shù)據(jù)對中國陸地氣溶膠光學(xué)特性及其垂直分布的研究[D];中國海洋大學(xué);2015年
6 鄭艷艷;介質(zhì)阻擋放電協(xié)同催化降解苯乙烯的研究[D];浙江大學(xué);2016年
7 羅濤;LA-ICP-MS分析過程中ICP引起的元素分餾效應(yīng)研究[D];中國地質(zhì)大學(xué);2015年
8 柴藝淳;大氣氣溶膠和氣象條件對京津冀地區(qū)區(qū)域性霧霾的影響[D];中國海洋大學(xué);2015年
9 陳靜;4種樹種揮發(fā)物分析及對SOA的影響研究[D];北京林業(yè)大學(xué);2016年
10 安曉丹;基于衛(wèi)星遙感的氣溶膠與云和降水相互作用研究[D];長江大學(xué);2016年
,本文編號:2498820
本文鏈接:http://sikaile.net/kejilunwen/huanjinggongchenglunwen/2498820.html