納米金為表面增強(qiáng)拉曼基底的多環(huán)芳烴檢測研究
[Abstract]:Polycyclic aromatic hydrocarbons (PAHs) are one of the most harmful persistent organic pollutants (pops). The traditional detection methods can not meet the needs of rapid detection due to the disadvantages of long pretreatment time and inconvenient in-situ detection. Surface-enhanced Raman (SERS) (SERS) can be used to detect vibration spectra with high sensitivity. It has become a new detection method in the field of environmental analysis and has great potential for application. Three SERS-enhanced substrates were prepared for the determination of naphthalene anthracene phenanthrene pyrene and their mixtures in polycyclic aromatic hydrocarbons (PAHs). In this paper, SERS active substrates were prepared by metal sol method and the parameters were optimized. Five kinds of gold sol with average diameter about 15~150nm were synthesized by adjusting the amount of sodium citrate added. The detection limits of p-mercaptobenzoic acid were all up to 10 渭 8 mol/L, using the gold sol as the substrate and the liquid Raman system with excitation light of 785 nm. The SERS enhancement factor (EF), of the gold sol was calculated. The characteristic peak strength of gold sol with average particle size of 41nm and 72nm is better, which is in good agreement with the previous EF calculation results. Then the pyrene of 10-5mol/L was detected by gold sol with the particle size of 41nm, and the characteristic peak was not obvious. The SERS spectra of naphthalene, anthracene, phenanthrene and pyrene with different concentrations were detected by concentration method. The detection limits were all up to 10 ~ 7 mol/L.. The detection of four PAHs mixtures showed that the characteristic summit changed and weakened due to the relationship between peak overlap and competitive adsorption. The linear correlation coefficients of different pyrene concentration and characteristic peak intensity were above 0.985. It can be used for semi-quantitative detection. In order to further improve the detection sensitivity of PAHs, the sediment was concentrated and dried by mixing gold sol, methanol sol in different proportion with the detector. Pyrene in polycyclic aromatic hydrocarbons (PAHs) was detected by micro-Raman spectroscopy (633nm). The optimal preparation time of gold sol was 30 min. The optimum particle size is 72 nm.. This is different from the previous liquid Raman detection, which may be related to the excitation wavelength, the size and morphology of the substrate. In this paper, the effects of pH value, chloride ion and other ions on the aggregation of nanoparticles and the effect of aggregation on the detection of SERS were studied. By comparison, when the final concentration of chloride ion was 0.75 渭 mol / L, the detection effect was the best. The results show that OH- ion and Cl- can promote the aggregation of gold sol and analyte. The detection limit of pyrene was up to 10 ~ 8 mol/L. by using the optimized conditions for the determination of pyrene on the substrate of gold particles. In the first method, in order to obtain a good detection effect, it is necessary to purify and concentrate the newly synthesized gold sol, which increases the complexity of preparation, and the second method, although the signal is further enhanced, is not easy to guarantee the repeatability of the substrate. Therefore, in the end of the thesis, we use easily obtained wool glass, sandpaper and PDMS structure based on sandpaper as template, and sputtering gold on the surface as the reinforced substrate of SERS. The background values of SERS are measured by using the microscope Raman system of excited light 633 nm. Pyrene was detected by sand paper, PDMS and wool glass.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:X830
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王小萍;姚檀棟;叢志遠(yuǎn);燕新梁;康世昌;張勇;;珠穆朗瑪峰地區(qū)土壤和植被中多環(huán)芳烴的含量及海拔梯度分布[J];科學(xué)通報(bào);2006年21期
2 Staffan Lundstedt;Paul A.White;Christine L.Lemieux;Krista D.Lynes;Iain B.Lambert;Lars銉berg;Peter Haglund;Mats Tysklind;王麗平;;多環(huán)芳烴污染區(qū)域氧化多環(huán)芳烴的來源、遷移轉(zhuǎn)化和毒性危害[J];AMBIO-人類環(huán)境雜志;2007年06期
3 ;歐盟2010年正式限用多環(huán)芳烴[J];特種橡膠制品;2008年01期
4 劉廷鳳;陶丹丹;王磊;劉常志;顧陽;丁克強(qiáng);;公路兩旁土壤中多環(huán)芳烴含量的測定[J];南京工程學(xué)院學(xué)報(bào)(自然科學(xué)版);2009年01期
5 于國光;張志恒;葉雪珠;孫彩霞;袁玉偉;楊桂玲;;杭州市郊區(qū)表層土壤中的多環(huán)芳烴[J];生態(tài)環(huán)境學(xué)報(bào);2009年03期
6 ;北京大學(xué)城市與環(huán)境學(xué)院陶澍研究團(tuán)隊(duì)定量分析了我國居民多環(huán)芳烴呼吸暴露風(fēng)險(xiǎn)[J];北京大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年01期
7 王振;高云濤;劉曉海;;化工廠土壤多環(huán)芳烴分布特征及評價(jià)[J];環(huán)境科學(xué)導(dǎo)刊;2010年04期
8 劉增俊;滕應(yīng);黃標(biāo);李振高;駱永明;;長江三角洲典型地區(qū)農(nóng)田土壤多環(huán)芳烴分布特征與源解析[J];土壤學(xué)報(bào);2010年06期
9 于國光;葉雪珠;趙首萍;張永志;張棋;王鋼軍;;杭州市郊區(qū)表層土壤中多環(huán)芳烴的風(fēng)險(xiǎn)分析[J];生態(tài)環(huán)境學(xué)報(bào);2011年05期
10 ;布達(dá)佩斯城市地區(qū)空氣中的多環(huán)芳烴[J];國外醫(yī)學(xué)參考資料(衛(wèi)生學(xué)分冊);1977年01期
相關(guān)會議論文 前10條
1 于國光;張志恒;葉雪珠;袁玉偉;孫彩霞;楊桂玲;;杭州市郊區(qū)表層土壤中多環(huán)芳烴的風(fēng)險(xiǎn)分析[A];中國環(huán)境科學(xué)學(xué)會2009年學(xué)術(shù)年會論文集(第二卷)[C];2009年
2 杭維琦;薛光璞;;南京市環(huán)境空氣中多環(huán)芳烴的污染特征[A];中國環(huán)境保護(hù)優(yōu)秀論文集(2005)(下冊)[C];2005年
3 魏垠;高銘徽;郭良宏;;化學(xué)發(fā)光免疫分析法測定多環(huán)芳烴及環(huán)境內(nèi)分泌干擾物[A];中國化學(xué)會第二十五屆學(xué)術(shù)年會論文摘要集(上冊)[C];2006年
4 秦寧;朱櫻;徐福留;;白洋淀大氣多環(huán)芳烴的污染特征與沉降通量[A];持久性有機(jī)污染物論壇2009暨第四屆持久性有機(jī)污染物全國學(xué)術(shù)研討會論文集[C];2009年
5 陶澍;;從多環(huán)芳烴的排放、遷移與暴露說起[A];新觀點(diǎn)新學(xué)說學(xué)術(shù)沙龍文集9:環(huán)境污染與人體健康[C];2007年
6 馬靜;Yuichi Horii;程金平;王文華;Kurunthachalam Kannan;;電子電器廢棄物拆解地區(qū)中氯代多環(huán)芳烴的研究[A];第五屆全國環(huán)境化學(xué)大會摘要集[C];2009年
7 劉金泉;吳明松;王麗;黃君禮;;二氧化氯對多環(huán)芳烴污染物的去除效果[A];二氧化氯研究與應(yīng)用--2010二氧化氯與水處理技術(shù)研討會論文集[C];2010年
8 劉艷;張經(jīng)華;林金明;;多環(huán)芳烴檢測技術(shù)研究進(jìn)展[A];2010中國環(huán)境科學(xué)學(xué)會學(xué)術(shù)年會論文集(第四卷)[C];2010年
9 胡健;張國平;劉,
本文編號:2439591
本文鏈接:http://sikaile.net/kejilunwen/huanjinggongchenglunwen/2439591.html