聯(lián)苯培養(yǎng)條件下紅球菌R04轉錄應答及其中間代謝物原兒茶酸的生物轉化
[Abstract]:With the study of metabolic kinetics and metabolic mechanism of PCBs (PCBs) biodegradation, the study of PCBs metabolic bacteria gradually transferred to genome and transcriptome level. Genome and transcriptome studies can not only reveal the molecular mechanism of specific biological processes, but also directly monitor the metabolic characteristics of the whole cell, and then obtain biphenyl / PCBs stress. Microorganism related cell physiological regulation response and biphenyl pathway may exist auxiliary mechanism information. In order to study the transcriptional response of erythrococcus cells in different carbon source cultures, especially in biphenyls, the genes related to (PCBs) transport, metabolism and regulation of PCBs were identified. It lays a foundation for further understanding the molecular mechanism of microbial degradation of PCBs. In this study, a polychlorinated biphenyls degrading bacterium erythrococcus (Rhodococcussp.R04) was used as a material to extract total RNA, reverse transcriptional synthesis of cDNA. from different carbon sources (ethanol, glucose and biphenyls). The three samples were sequenced by high throughput sequencing. The whole genome expression pattern was obtained by analyzing the sequencing data, and the gene expression under different conditions was analyzed by differential analysis. The relationship between biphenyl metabolic network and transcription regulation and metabolic response of other genes in erythrococcus was analyzed. Q-RT-PCR was used to analyze the gene expression under different carbon source culture conditions. Compared with glucose and ethanol, the number of up-regulated (log2 Ratio "g1) genes in biphenyl culture was 375 and 332, respectively. Compared with glucose, the up-regulated expression of related genes in biphenyl culture was basically consistent with that of Q-RT-PCR. The differentially expressed genes of more than 160 small branches of cell components, molecular functions and biological processes were obtained by functional classification. Some of the genes were involved in the regulation of biphenyl metabolism and transcription, and the transport of biphenyls. Antioxidant stress response and signal transduction pathway system and other physiological processes. Among the many isozyme genes involved in the upstream metabolic pathway of biphenyls, only bphC2 and bphDl upregulated the expression in biphenyls, while the other isozymes remained unchanged or down-regulated in biphenyls. Transcription notes and differential analysis suggested that the metabolism of benzoic acid in Rhodococcus R04 was mainly accomplished by three metabolic pathways, namely, catechol-adjacent pathway, meso-site pathway and protocatechuic acid pathway. Compared with glucose and ethanol, the gene expression of Rhodococcus rupestris R04 was significantly different from that of glucose and ethanol, which provided a theoretical basis for further analysis of metabolic characteristics and regulation of PCBs. Protocatechuic acid is the main active component of many kinds of traditional Chinese medicine and the precursor of many kinds of drugs. Its biological effects are antioxidant, antibacterial, anti-tumor, anti-inflammatory and so on. At present, the demand for protocatechuic acid in domestic market is increasing year by year. The main production method is to extract from plants by chemical and chemical methods. The extraction process is complex, and the extraction rate is low and the losses are different in the process of multi-step extraction. And caused certain damage to the ecological environment. In this paper, various problems in protocatechuic acid production were solved from the point of view of biotransformation, and protocatechuic acid was first produced by bioenzyme catalysis. The gene of p-hydroxybenzoic acid-3-hydroxylase was expressed in E. coli BL21 (DE3) cells. An engineering strain producing protocatechuic acid was successfully constructed, and the green catalysis of protocatechuic acid was realized. In addition, the experiment conditions were optimized to improve the yield of protocatechuic acid. The conversion of p-hydroxybenzoic acid in the solution of OD could reach 250 渭 g.
【學位授予單位】:山西大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:X172;Q78
【共引文獻】
相關期刊論文 前10條
1 魏小春;鄭群;;生物信息學以及植物新基因的發(fā)現(xiàn)研究[J];北方園藝;2009年05期
2 程道軍,夏慶友,周澤揚,魯成,向仲懷;家蠶cDNA文庫構建及大規(guī)模EST測序[J];蠶業(yè)科學;2003年04期
3 沈以紅,程道軍,查幸福,夏慶友,向仲懷;家蠶脂肪體組織基因表達譜的研究 Ⅰ.家蠶5齡中期幼蟲脂肪體組織基因表達分析[J];蠶業(yè)科學;2004年01期
4 王曉娜;盧欣石;;表達序列標簽的應用現(xiàn)狀及分析方法研究[J];草業(yè)科學;2010年05期
5 楊傳平,魏志剛,楊文慧;特異性表達基因克隆的策略[J];東北林業(yè)大學學報;2002年05期
6 許占友,常汝鎮(zhèn),邱麗娟,李向華;大豆表達序列標記(EST)研究進展[J];大豆科學;2000年02期
7 李昂;曲媛媛;周集體;譚靚;賈玉紅;;2,3-二羥基聯(lián)苯酶促降解及編碼酶基因擴增[J];大連理工大學學報;2009年04期
8 宋國琦;胡銀崗;林凡云;董普輝;何蓓如;;YS型小麥溫敏雄性不育系A3017育性相關基因的SSH分析[J];西北植物學報;2006年07期
9 張水金;鄭軼;朱永生;楊東;涂詩航;周鵬;鄭家團;黃庭旭;;水稻脆性突變體研究進展[J];福建農業(yè)學報;2011年05期
10 Michael G.Walker;Gene Identification and Expression Analysis of 86,136 Expressed Sequence Tags(EST)from the Rice Genome[J];Genomics Proteomics & Bioinformatics;2003年01期
相關會議論文 前2條
1 趙瑩;李克斌;曹雅忠;陳鵬;尹姣;仵均祥;;全長均一化cDNA文庫及其應用[A];“創(chuàng)新驅動與現(xiàn)代植!薄袊参锉Wo學會第十一次全國會員代表大會暨2013年學術年會論文集[C];2013年
2 方麗;劉斌;吳克;彭書傳;俞志敏;金杰;;一株多氯聯(lián)苯降解菌株分離及其的酶學性質初步研究[A];第八屆中國酶工程學術研討會論文集[C];2011年
相關博士學位論文 前10條
1 韓英鵬;多環(huán)境、多遺傳背景下不同發(fā)育時期大豆籽粒重的QTL分析[D];哈爾濱師范大學;2010年
2 蘇磊;花生種子全長cDNA文庫序列分析及花生LEA基因家族的初步研究[D];山東師范大學;2010年
3 劉鵬;若干環(huán)境污染物富集、檢測和轉化的理論研究[D];山東大學;2011年
4 余發(fā)新;雜種馬褂木生根性狀遺傳變異及相關基因篩選[D];南京林業(yè)大學;2011年
5 李建武;黃瓜霜霉病抗性相關基因篩選及過敏性抗病機制[D];華中農業(yè)大學;2010年
6 王心宇;分子標記技術在小麥抗白粉病育種及指紋圖譜分析中的應用研究[D];南京農業(yè)大學;2000年
7 駱蒙;基于抑制差減雜交方法的小麥抗白粉病相關基因表達譜研究[D];中國農業(yè)科學院;2001年
8 薄天岳;亞麻抗銹病、抗枯萎病基因的分子標記及品種資源對枯萎病的抗性評價[D];四川農業(yè)大學;2002年
9 莊曉峰;稻瘟病菌誘導水稻特異表達EST數(shù)據庫的建立及相關基因鑒定[D];浙江大學;2003年
10 楊秀紅;大豆抗病相關基因的克隆研究[D];東北農業(yè)大學;2003年
相關碩士學位論文 前10條
1 潘海濤;小麥EST-SSR標記的開發(fā)和苗期養(yǎng)分吸收QTL定位[D];山東農業(yè)大學;2009年
2 汪俊君;小麥大粒突變體的遺傳分析和相關基因片段的克隆[D];山東農業(yè)大學;2009年
3 王斌;亞麻EST-SSR和SRAP標記研究[D];甘肅農業(yè)大學;2010年
4 周廬萍;蝴蝶蘭成花“溫敏”現(xiàn)象消減文庫的構建及相關基因的捕獲[D];浙江農林大學;2010年
5 梁芳;多氯聯(lián)苯污染土壤生物修復研究[D];浙江大學;2011年
6 皮文清;Dyella ginsengisoli LA-4中聯(lián)苯降解基因簇的轉錄及代謝途徑研究[D];大連理工大學;2011年
7 孫瑋;PCBs污染土壤的宏基因組文庫構建與新bphC基因的克隆表達[D];吉林大學;2011年
8 李潔;基于可控合成超疏水銅納米界面的水污染物檢測和處理研究[D];中國科學技術大學;2011年
9 羅小燕;朵麗蝶蘭成花‘溫敏現(xiàn)象’相關基因GIGANTEA的克隆與表達分析[D];浙江農林大學;2011年
10 尤春芳;簇毛麥6V染色體短臂小片段易位系的分子細胞遺傳學鑒定[D];南京農業(yè)大學;2010年
,本文編號:2416645
本文鏈接:http://sikaile.net/kejilunwen/huanjinggongchenglunwen/2416645.html