天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 環(huán)境工程論文 >

巢湖市環(huán)城河底泥釋放特性研究及補水優(yōu)化計算

發(fā)布時間:2018-07-06 15:58

  本文選題:河流水質(zhì)模型 + 補水流量; 參考:《安徽建筑大學(xué)》2015年碩士論文


【摘要】:巢湖市地處安徽中部,臨近長江,環(huán)抱巢湖。近年來,巢湖市經(jīng)濟迅速發(fā)展,巢湖市周圍的河流、湖泊均受到不同程度的污染,尤其以巢湖市區(qū)的河道污染最為嚴(yán)重,影響居民的日常生活,因此,需要對巢湖市區(qū)水環(huán)境進行保護和生態(tài)安全維護。本課題研究對象環(huán)城河為巢湖市區(qū)典型污染河流,是巢湖市區(qū)最主要水系。環(huán)城河分為東、西兩部分。東、西環(huán)城河水質(zhì)均為劣V類,水質(zhì)污染嚴(yán)重,總磷、總氮嚴(yán)重超標(biāo)。課題根據(jù)河道的特征、污染負荷,以COD代替BOD,利用Dobbins-Camp水質(zhì)模型,計算河道末端水質(zhì)達標(biāo)所需要的最小補水流速和最小補水流量,從而優(yōu)化巢湖市城區(qū)水系補水調(diào)控技術(shù)。選擇在東、西環(huán)城河上各布置三個采樣點,共六個采樣點。參照BOD培養(yǎng)法測定COD降解系數(shù)k1和沉淀系數(shù)k3,并對COD降解系數(shù)k1進行修正,得出相同溫度下東環(huán)城成河COD降解系數(shù)比西環(huán)城河大,原因是東環(huán)城河河水污染程度比西環(huán)城河嚴(yán)重,水中污染物較多,導(dǎo)致河流耗氧速度變快,引起COD降解系數(shù)k1較大通過底泥耗氧實驗?zāi)M測定得到底泥耗氧量AO與時間t呈線性關(guān)系,關(guān)系式分別為:東環(huán)城河7℃時△O=0.0740t+0.4394,15℃時△O=0.1602t-0.1534,28℃時△O=0.2316t,西環(huán)城河7℃時△O=0.0899t+0.3661,15℃時△O=0.1522t+0.2651,28℃時△O=0.2088t+0.4600;單位面積單位時間底泥耗氧速率p1與溫度T存在線性關(guān)系,且水溫13℃、29℃、16℃、5℃條件下東環(huán)城河單位面積單位時間底泥消耗溶解氧量分別為:17.255mg/(m2·h)、31.857mg/(m2·h)、19.993mg/(m2·h)、9.955mg/(m2·h)水溫13℃、29℃、16℃、5℃條件下西環(huán)城河單位面積單位時間底泥消耗溶解氧量分別為。17.986mg/(m2·h)、29.956mg/(m2·h)、20.230mg/(m2·h)、12.001mg/(m2·h)。水體復(fù)氧包括大氣復(fù)氧和光合作用復(fù)氧。本文采用公式估算法。根據(jù)東、西環(huán)城河平均水深,選用Churchill公式計算大氣復(fù)氧系數(shù)k2。光合作用復(fù)氧特性研究采用黑白瓶實驗測定,春季和秋季光照強度相近可視為相同,測定結(jié)果分別為:東環(huán)城河夏季產(chǎn)氧速率為1.237mg/L·d、耗氧速率為0.303mg/L·d,秋季產(chǎn)氧速率為0.723mg/L·d、耗氧速率為0.273mg/L·d,冬季產(chǎn)氧速率為0.573mg/L·d、耗氧速率為0.283mg/L·d;西環(huán)城河夏季產(chǎn)氧速率為0.850mg/L·d、耗氧速率為0.223mg/L·d,秋季產(chǎn)氧速率為0.715mg/L·d、耗氧速率為0.195mg/L·d,冬季產(chǎn)氧速率為0.353mg/L·d、耗氧速率為0.168mg/L·d。通過對底泥釋放實驗厭氧條件下和自然水體條件下的靜態(tài)模擬,得出:COD釋放量20℃30℃5℃,原因是20℃既不利于微生物降解有機物也不利于礦物質(zhì)吸附有機物,導(dǎo)致大量有機物釋放到水體,水體COD濃度高;底泥釋放TN、TP的量是30℃20℃5℃,原因為溫度升高,微生物能夠利用水中溶解氧降解有機氮和有機磷,此外,溶解氧的減少使得氧化還原電位降低,使Fe3+還原成Fe2+,磷可以從沉淀物中釋放出來,所以,溫度越高,底泥釋放TN、TP越多;厭氧條件下底泥釋放COD、TN、TP濃度均大于自然水體條件下底泥釋放量,原因是厭氧條件下,好氧微生物不能降解有機物,有機物進行厭氧分解不利于硝化作用和反硝化作用,溶解氧減少容易發(fā)生Fe3+還原成Fe2+,因此,COD、TN、TP釋放量增多。計算保障河道末端DO≥3mg/L、COD≤30mg/L(Ⅳ類)補水所需要的最小流速分別為:東環(huán)城河春季0.0063m/s、夏季0.0136m/s、秋季0.0070m/s、冬季0.0035m/s;西環(huán)城河春季0.0155m/s、夏季0.0220m/s、秋季0.0163m/s、冬季0.0055m/s;再根據(jù)Q=A×u計算需要的最小補水流量分別為東環(huán)城河春季0.2232m3/s、夏季0.4896m3/s、秋季0.2520m3/s、冬季0.1260m3/s;西環(huán)城河春季1.3175m3/s、夏季1.8700m3/s、秋季1.3855m3/s、冬季0.4675m3/s。
[Abstract]:Chaohu is located in the middle of Anhui, near the Yangtze River and embracing Chaohu. In recent years, the economy of Chaohu has developed rapidly, and the rivers and lakes around Chaohu are polluted to varying degrees. Especially, the river pollution in the Chaohu city is the most serious and affects the daily life of the residents. Therefore, the water environment of Chaohu city needs to be protected and ecological security needs to be carried out. The research object around the city is the typical polluted river in Chaohu City, which is the most important water system in the city of Chaohu. The city of the city is divided into two parts in the East and West. The water quality of the East and west ring city is V, the water quality is seriously polluted, the total phosphorus and total nitrogen exceed the standard. The project is based on the characteristics of the river, the pollution load, the COD instead of BOD, and the water quality model of the Dobbins-Camp. The minimum water supplement flow rate and the minimum water supplement flow required for the water quality standard of the end of the river channel were calculated to optimize the water supplement control technology in Chaohu city. Three sampling points were arranged on the East and west ring city river, and six sampling points were arranged. The COD degradation coefficient K1 and the precipitation coefficient K3 were measured with reference to the BOD culture method, and the COD degradation coefficient K1 was repaired. At the same temperature, the degradation coefficient of COD in the east ring River is larger than that of the west ring city river. The reason is that the pollution degree of the river water in the east ring River is more serious than that of the west ring city river, and the pollutants in the water are more, causing the speed of the river oxygen consumption to be faster and the COD degradation coefficient K1 is larger through the experimental model of sediment oxygen consumption. The mud oxygen consumption AO is in linear relation with the time t. The relationship is: Delta O=0.0740t+0.4394,15 C at 7 degrees C, Delta O=0.1602t-0.1534,28 C delta O=0.2316t, Delta O=0.0899t+0.3661,15 C at Delta O=0.0899t+0.3661,15 C delta O=0.1522t+0.2651,28 C delta O=0.1522t+0.2651,28 C, Delta O=0.2088t+0.4600 at the time delta O=0.1522t+0.2651,28 C; and there is a linear relationship between the oxygen consumption rate P1 per unit area per unit time and temperature T, and the water temperature is 13, 2. At 9, 16, and 5 C, the amount of dissolved oxygen per unit time per unit area of the east ring city river is 17.255mg/ (m2. H), 31.857mg/ (m2. H), 19.993mg/ (m2. H), 9.955mg/ (M2 h) water temperature 13, 29, 16, 5, respectively. H), 20.230mg/ (m2. H), 12.001mg/ (m2. H). Water reoxygenation includes atmospheric reoxygenation and photosynthesis reoxygenation. The formula estimation method is used in this paper. According to the average water depth of the East and west ring city river, the re oxygen characteristic of the atmospheric reoxygenation coefficient k2. photosynthesis is calculated by the Churchill formula, and the experimental determination of the black and white bottle is used for the study. The light intensity of the spring and autumn is similar to that of the autumn. The results are as follows: the oxygen rate of the east ring River is 1.237mg/L D, the oxygen consumption rate is 0.303mg/L D, the oxygen rate is 0.723mg/L D, the oxygen consumption rate is 0.273mg/L D, the oxygen rate is 0.573mg/L D in winter, the oxygen consumption rate is 0.283mg/L D, and the oxygen rate of the West ring city river in summer is 0.22. 3mg/L. D, the oxygen rate in autumn is 0.715mg/L. D, oxygen consumption rate is 0.195mg/L. D, oxygen rate is 0.353mg/L D in winter, oxygen consumption rate is 0.168mg/L. D. through the static simulation under the experimental anaerobic condition and natural water condition under the sediment release, the COD release amount is 20 C 30 C 5 C, the reason is that 20 C is not good for microbial degradation organic. It is also not conducive to mineral adsorption of organic matter, resulting in a large number of organic substances released into the water body, the concentration of COD in water body is high, sediment release TN, the amount of TP is 30 degrees centigrade 20 degrees centigrade, the reason for the increase of temperature, microorganism can use dissolved oxygen in water to degrade organic nitrogen and organophosphorus, in addition, the reduction of dissolved oxygen reduces the oxidation-reduction potential and makes Fe3+ reduced to Fe 2+, phosphorus can be released from the sediment, so the higher the temperature, the more the sediment release TN, the more TP, the release of COD, TN and TP under anaerobic conditions is greater than the release of sediment under the natural water condition. The reason is that aerobic microorganisms can not degrade organic matter under anaerobic conditions. The anaerobic decomposition of organic compounds is not conducive to nitrification and anti nitrification. As a result, the reduction of dissolved oxygen is easily reduced to Fe2+, so the release of COD, TN and TP is increased. The minimum flow rate to ensure DO more than 3mg/L at the end of the river and the minimum flow rate required for COD less than 30mg/L (class IV) water supplement are: the spring 0.0063m/s of the east ring River, the 0.0136m/s in summer, the autumn 0.0070m, the winter, the spring of the west ring city and the summer season. In autumn 0.0163m/s, winter 0.0055m/s; and then according to the Q=A x u calculation required for the minimum water flow rate is the east ring city spring 0.2232m3/s, summer 0.4896m3/s, autumn 0.2520m3/s, winter 0.1260m3/s; West ring city spring 1.3175m3/s, summer 1.8700m3/s, autumn 1.3855m3/s, the winter 0.4675m3/s..
【學(xué)位授予單位】:安徽建筑大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:X522

【參考文獻】

相關(guān)期刊論文 前6條

1 ;Development and application of a two-dimensional water quality model for the Daqinghe River Mouth of the Dianchi Lake[J];Journal of Environmental Sciences;2009年03期

2 ;Three-dimensional hydrodynamic and water quality model for TMDL development of Lake Fuxian,China[J];Journal of Environmental Sciences;2012年08期

3 劉立坤,徐祖信;底泥耗氧速率的測定方法比較[J];上海環(huán)境科學(xué);2002年05期

4 王敏,張明旭;蘇州河武寧路斷面底泥需氧量的測定[J];上海環(huán)境科學(xué);2003年06期

5 雒文生,李莉紅,賀濤;水體大氣復(fù)氧理論和復(fù)氧系數(shù)研究進展與展望[J];水利學(xué)報;2003年11期

6 謝麗強,謝平,唐匯娟;武漢東湖不同湖區(qū)底泥總磷含量及變化的研究[J];水生生物學(xué)報;2001年04期

相關(guān)碩士學(xué)位論文 前1條

1 黃飛;三岔湖底泥污染物釋放規(guī)律研究[D];西南交通大學(xué);2011年

,

本文編號:2103354

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huanjinggongchenglunwen/2103354.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶0b575***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com