接枝丙綸非織造布在吸附分離和電化學(xué)氧化處理模擬染料廢水中的應(yīng)用
本文選題:丙綸非織造布 + 接枝改性; 參考:《蘇州大學(xué)》2015年碩士論文
【摘要】:染料廢水成分復(fù)雜,色度和化學(xué)需氧量高,當(dāng)這類廢水未經(jīng)處理而流入自然水體中時,嚴(yán)重地破壞了水環(huán)境,不利于人類的健康。因此,染料廢水的綜合性治理已經(jīng)成為一個急需要解決的問題。丙綸非織造布因為具有力學(xué)強度高、孔隙率大,化學(xué)穩(wěn)定性好,價格低廉等優(yōu)點而被廣泛應(yīng)用。經(jīng)過紫外光引發(fā)接枝改性后的丙綸非織造布,類似于膜分離的作用,可以賦予其對染料良好的過濾吸附分離性能。將改性后的織物應(yīng)用于電化學(xué)氧化裝置中,可以降低染料廢水的COD,提高電化學(xué)處理效率。本論文采用兩種方法對模擬染料廢水陽離子紅X-GRL和弱酸性紅RN進行處理,一是對丙綸非織造布進行紫外光輻射接枝改性處理,分別將陰離子單體丙烯酸AA和陽離子單體MAPTAC接枝到丙綸非織造布上,從而分別賦予它們對陽離子染料和弱酸性染料的良好的過濾吸附分離性能,著重探討了其吸附動力學(xué)和解吸特性,以及動態(tài)吸附和超聲波解吸循環(huán)10次的染料去除效果。二是利用電化學(xué)氧化裝置對模擬染料廢水進行處理,克服了第一種方法中產(chǎn)生的解吸廢液二次污染以及一種改性織物只能去除單一種類的染料的局限性問題。實驗中初步探討了不同條件對陽離子染料處理效果的影響,進一步將改性丙綸非織造布和離子交換樹脂混合填充到電化學(xué)氧化裝置中,研究了吸附與電化學(xué)氧化作用對兩種染料的去除效果。得出如下重要結(jié)論:(1)接枝改性織物PP-g-AA對陽離子染料的吸附符合Lagergren’s準(zhǔn)二級動力學(xué)模型和雙指數(shù)模型,且初始濃度越高,吸附速率越快,吸附平衡時間約60min。(2)吸附陽離子染料后的接枝織物PP-g-AA可以用陰離子表面活性劑十二烷基苯磺酸鈉、乙醇和去離子水混合溶劑進行超聲波解吸。解吸液的最佳配比為:5%的十二烷基苯磺酸鈉,乙醇:水=3:7,解吸時間約60-90min。解吸符合Lagergren’s準(zhǔn)二級動力學(xué)。在不同吸附初始濃度時,解吸量和解吸率均隨著解吸時間延長和吸附量增大呈現(xiàn)先增大后減小的趨勢。解吸廢液中的十二烷基苯磺酸鈉可以用泡沫分離法去除。(3)對于吸附弱酸性紅RN染料的接枝織物PP-g-MAPTAC,可以用陽離子表面活性劑1427、乙醇和去離子水混合溶劑進行超聲波解吸。解吸液的最佳配比為:14275%,乙醇:水=3:7。不同吸附初始濃度下的解吸過程符合Lagergren’s準(zhǔn)二級動力學(xué)模型。解吸率隨時間和吸附量的變化規(guī)律與陽離子染料的解吸相同。(4)兩種接枝織物對染料均具有良好的吸附性能,PP-g-AA對陽離子紅X-GRL的最大吸附量為122.38mg/g,PP-g-MAPTAC對弱酸性紅RN染料的最大吸附量為230.36mg/g。(5)在自制動態(tài)吸附過濾分離裝置上重復(fù)吸附-解吸10次,原水濃度10mg/L和過濾總液量高達(dá)30L的模擬陽離子染料廢水的實驗中,三片PP-g-AA接枝織物對染料去除率均在96%以上,解吸液用量為過濾原液體積的10%,最大解吸率為89.08%。在很小的操作壓力37.1k Pa下,PP-g-AA膜的水通量最大能達(dá)到38.6L/(m2·h),表現(xiàn)出優(yōu)異的再生利用特性與過濾分離性能。(6)對于弱酸性染料濃度10mg/L和過濾液總量高達(dá)30L的模擬染料廢水的動態(tài)吸附-解吸再生循環(huán)10次的實驗過程中,兩片PP-g-MAPTAC接枝織物對染料去除率均在79%以上,最大解吸率達(dá)到98.43%,表現(xiàn)出優(yōu)異的可再生利用特性。在40k Pa的操作壓力下,PP-g-MAPTAC膜的水通量最大能達(dá)到20.1L/(m2·h),其水通量基本大于納濾膜和超濾膜。(7)電化學(xué)氧化法處理模擬染料廢水實驗中,淡室不填充條件下,以0.1mol/L Na Cl為電解液對陽離子紅X-GRL染料進行電化學(xué)氧化處理,脫色率和CODcr去除率隨著電壓的增大而增大,隨著染料進水速度的增大而減小。當(dāng)染料30mg/L,進水速度為750m L/h,電壓30V時,染料脫色率為100%,CODcr去除率在70%以上。Na Cl的電化學(xué)氧化作用明顯優(yōu)于Na2SO4。(8)淡室混合填充離子交換樹脂和改性丙綸非織造布時,利用電化學(xué)氧化裝置處理陽離子染料和酸性染料的時,兩者的處理效果均比較優(yōu)異,但是處理陽離子染料時所消耗的電能較小,且進水速度較大。對于陽離子染料,在較低電壓10V,染料進水速度為1250m L/h時,脫色率為96%,CODcr去除率為70%以上。對于弱酸性染料,在電壓25V,進水速度為750m L/h時,染料的脫色率為100%,CODcr去除率為76%左右。本文的特色與創(chuàng)新之處:(1)本文較系統(tǒng)地探討接枝織物吸附過濾分離染料廢水,不僅處理染料廢水量大(廢水與洗滌用水體積比為10:1),而且織物重復(fù)利用次數(shù)高達(dá)10次,特別是用加熱與泡沫分離法分別回收處理乙醇、表面活性劑和染料。(2)本文基于電化學(xué)氧化原理,率先利用電去離子裝置處理模擬染料廢水,并初步取得了良好效果。
[Abstract]:Dyestuff wastewater has a complex composition, high chromaticity and chemical oxygen demand. When such wastewater flows into the natural water body without treatment, it seriously destroys the water environment and is not conducive to human health. Therefore, the comprehensive treatment of dyestuff wastewater has become an urgent problem to be solved. The polypropylene nonwovens have high mechanical strength and large porosity. The modified polypropylene nonwovens, similar to the effect of membrane separation, can give the dyestuff a good adsorption separation performance. The modified fabric can be used in electrochemical oxygen loading, which can reduce the COD of dye wastewater and improve electricity. Two methods are used to treat the cationic red x--GRL and the weak acid red RN in the simulated dye wastewater. One is to graft the polypropylene nonwovens by UV radiation grafting, and the anionic monomer acrylic acid AA and the cationic monomer MAPTAC are grafted onto the polypropylene nonwovens respectively. The good adsorption and separation performance of cationic dyes and weak acid dyes is made. The adsorption kinetics and desorption characteristics, and the 10 dye removal effects of dynamic adsorption and ultrasonic desorption cycle are emphatically discussed. Two is the use of electrochemical oxidation equipment to treat simulated dye wastewater and overcome the desorption of the first method. The two pollution of waste liquid and the limitation of a single type of dyestuff can only be removed by a modified fabric. In the experiment, the effect of different conditions on the treatment effect of cationic dyes was preliminarily discussed. The modified polypropylene nonwovens and ion-exchange resins were mixed into the electrochemical oxidation device, and the adsorption and electrochemical oxygen were studied. The effect of two dyes on the removal of two kinds of dyes was concluded as follows: (1) the adsorption of cationic dyes on the modified fabric PP-g-AA accorded with the Lagergren 's quasi two kinetic model and the double exponential model, and the higher the initial concentration, the faster the adsorption rate, the adsorption equilibrium time about 60min. (2) after the adsorption of the cationic dye PP-g-AA. Anionic surfactant twelve alkylbenzene sulfonate, ethanol and deionized water can be used for supersonic desorption. The optimum ratio of solution absorption is 5% of twelve alkyl benzene sulfonates, ethanol: water =3:7, desorption time about 60-90min. desorption in accordance with Lagergren 's quasi two kinetics. The desorption rate increases first and then decreases with the prolongation of the desorption time and the increase of the adsorption capacity. The twelve alkyl benzene sulfonate in the desorbed waste liquid can be removed by the foam separation. (3) the graft fabric of the weakly acidic red RN dye can be mixed with the cationic surfactant 1427, ethanol and deionized water. The optimum ratio of solution absorption is 14275%, ethanol: the desorption process of water =3:7. under different initial concentration of water conforms to Lagergren 's quasi two kinetics model. The change of desorption rate with time and adsorption quantity is the same as that of cationic dye. (4) two kinds of graft fabrics have good adsorption properties to dyes, PP-g The maximum adsorption capacity of -AA for cationic red x--GRL is 122.38mg/g, and the maximum adsorption capacity of PP-g-MAPTAC for weak acid red RN dye is 230.36mg/g. (5), which is repeated adsorbed and desorption on the self-made dynamic adsorption filtration separation device for 10 times. In the experiment of the simulated cationic dye wastewater with the concentration of 10mg/L and the total filtrate as high as 30L, three pieces of PP-g-AA graft in the experiment. The dye removal rate of the fabric is above 96%, and the solution absorption amount is 10% of the volume of the filtered original liquid. The maximum desorption rate is 89.08%. at a very small operating pressure 37.1k Pa, the maximum water flux of the PP-g-AA film can reach 38.6L/ (m2. H). The excellent regeneration and use properties and filtration separation performance are shown. (6) for the weak acid dye concentration 10mg/L and filtration During the 10 times of the dynamic adsorption desorption regeneration cycle of simulated dye wastewater with a total liquid amount of 30L, two PP-g-MAPTAC grafted fabrics have more than 79% dye removal rates, and the maximum desorption rate is 98.43%, showing excellent renewable properties. The maximum water flux of PP-g-MAPTAC film can reach 20 under the operating pressure of 40K Pa. The water flux of.1L/ (m2. H) is basically greater than that of nanofiltration membrane and ultrafiltration membrane. (7) in the experiment of treating simulated dye wastewater by electrochemical oxidation, the electrochemical oxidation of cationic red x -GRL dye is treated with 0.1mol/L Na Cl as electrolyte. The decolorization rate and CODcr removal rate increases with the increase of voltage, with the speed of dye influent. When the dye 30mg/L, the influent speed is 750m L/h and the voltage 30V, the dye decolorization rate is 100%, the electrochemical oxidation of CODcr removal rate above 70%.Na Cl is obviously superior to Na2SO4. (8) light chamber mixed with ion exchange resin and modified polypropylene nonwovens, and the electrochemical oxidation device is used to treat the cationic dyes and acids. The treatment effect of the dye is excellent, but the electricity energy consumed by the cationic dye is smaller and the influent speed is larger. For the cationic dye, the decolorization rate is 96% and the CODcr removal rate is more than 70% at the lower voltage 10V and the dye influent speed of 1250m L/h. For the weak acid dye, the inlet velocity is 7 at the voltage 25V. At 50m L/h, the decolorization rate of dye is 100% and the removal rate of CODcr is about 76%. The characteristics and innovations of this paper are as follows: (1) this paper systematically discusses the adsorption and filtration of dye wastewater by grafting fabric adsorption and filtration, which not only deals with the large amount of waste water (the volume ratio of wastewater and washing water is 10:1), but also the reutilization of the fabric as high as 10 times, especially by heating and heating. The foam separation method was used to recover the ethanol, surface active agent and dye respectively. (2) based on the principle of electrochemical oxidation, this paper took the lead in the treatment of simulated dye wastewater with electrodeionization device, and achieved good results.
【學(xué)位授予單位】:蘇州大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:X703
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 何一帆,趙耀明;丙綸非織造布親水改性工藝研究[J];產(chǎn)業(yè)用紡織品;2002年12期
2 李紅祝;王虹;余調(diào)娟;李榮年;吳慶;熊立東;;聚丙烯非織造布親水改性的研究[J];產(chǎn)業(yè)用紡織品;2006年01期
3 陳忻;孫恢禮;潘嘉慧;;殼聚糖及其衍生物對染料廢水的脫色研究[J];環(huán)境科學(xué)與技術(shù);2007年09期
4 楊大春,張光輝,顧平;Fenton—微濾工藝處理印染廢水研究[J];中國給水排水;2003年03期
5 鄒紅林;新型氧化-混凝劑處理染料廢水研究[J];環(huán)境污染治理技術(shù)與設(shè)備;2003年01期
6 楊波;謝輝;周鵬;;間接陽極氧化處理活性黑5模擬染料廢水的研究[J];環(huán)境工程學(xué)報;2011年05期
7 王超;王璇;應(yīng)葉;倪力軍;;含十二烷基苯磺酸鈉廢水的多級泡沫分離研究[J];化學(xué)世界;2008年06期
8 范莉莉;陸人武;陳煒鵬;;反滲透技術(shù)處理染料廢水的試驗研究[J];環(huán)境科技;2009年S1期
9 李海靜;魏俊富;趙孔銀;鄭建;袁峰;;含季銨基離子交換纖維的制備研究[J];離子交換與吸附;2009年06期
10 景曉輝;丁欣宇;蔡再生;;電催化氧化降解活性紅紫X-2R染料廢水的研究[J];南通大學(xué)學(xué)報(自然科學(xué)版);2011年01期
相關(guān)博士學(xué)位論文 前1條
1 劉冠鳳;聊城市地表水環(huán)境問題及對策研究[D];武漢理工大學(xué);2012年
相關(guān)碩士學(xué)位論文 前2條
1 陳國豐;Fenton氧化—混凝法處理印染廢水的研究[D];廣東工業(yè)大學(xué);2013年
2 楊麗娟;電化學(xué)氧化處理高鹽活性染料廢水研究[D];北京化工大學(xué);2013年
,本文編號:2076514
本文鏈接:http://sikaile.net/kejilunwen/huanjinggongchenglunwen/2076514.html