甲苯降解真菌選育及應(yīng)用其強化生物過濾運行性能研究
本文選題:甲苯 + 生物降解; 參考:《浙江工業(yè)大學(xué)》2015年碩士論文
【摘要】:甲苯類VOCs廣泛應(yīng)用于染料、醫(yī)藥、農(nóng)藥、有機合成等化工和制藥行業(yè)中,化學(xué)性質(zhì)較為穩(wěn)定,具有生物積累性和生物毒性,對人體具有不同程度的危害作用,是美國環(huán)保局(EPA)優(yōu)先控制的污染物名單之一。對于這類污染物,生物法凈化技術(shù)由于具有高效、低耗能、反應(yīng)條件溫和、二次污染小等優(yōu)點,因此它受到越來越多的研究者們的關(guān)注和探索。本論文篩選得到了一株能以甲苯為唯一碳源和能源的降解菌株LW-1,經(jīng)過基于菌株的形態(tài)、生理生化特性、18s RNA基因序列分析及其系統(tǒng)發(fā)育樹和Biolog鑒定,可確定菌株為綠色木霉Trichoderma viride,初步判斷其為新發(fā)現(xiàn)的降解甲苯的菌株。在搖瓶試驗中,真菌LW-1對甲苯雖然有一定降解能力,但是降解效率較低,不能降解完全。菌株LW-1降解甲苯最佳生長條件是溫度為30℃、pH值約為4.8。在菌株底物廣譜性研究過程中,發(fā)現(xiàn)菌株LW-1對乙酸乙酯有很高的降解效率。在搖瓶試驗中,可能瓶內(nèi)濕度太大,不利于真菌的生長繁殖,因為真菌一般喜歡較為干燥的環(huán)境。在生物過濾塔中,利用菌株LW-1接種到生物濾塔反應(yīng)器中,來強化生物過濾降解甲苯廢氣。為了研究菌株強化效應(yīng),分別采用單獨真菌、真菌+細菌構(gòu)成的復(fù)合菌種啟動生物過濾塔,在運行18天后,兩個塔(f-bf、fb-bf)掛膜啟動基本完成。復(fù)合菌種啟動生物過濾塔,其啟動的速度較快,并且對甲苯的去除性能較好,不同的運行條件下其去除率和最大去除負荷都是最大,這都體現(xiàn)出“真菌+細菌”的接種模式具有較高的去除性能,復(fù)合菌株具有明顯的強化效應(yīng)。由于含有真菌和細菌,在處理較高濃度廢氣時較單獨真菌啟動的過濾塔具有明顯優(yōu)勢。本論文通過實時熒光定量pcr和高通量測序等分子生物學(xué)手段,來研究兩套不同的生物過濾塔里生物膜相生物種群結(jié)構(gòu)、多樣性及動態(tài)變化規(guī)律。實時熒光定量pcr檢測數(shù)據(jù)表明,啟動期f-bf塔內(nèi)的細菌明顯少于fb-bf塔內(nèi)的細菌數(shù)量,因為f-bf塔內(nèi)循環(huán)營養(yǎng)液中添加了硫酸鏈霉素,抑制了大部分細菌的生長。兩塔古菌的數(shù)量相差無幾,然而在真菌數(shù)量上,f-bf塔真菌數(shù)量大概是fb-bf塔真菌數(shù)量的2倍多。在穩(wěn)定運行階段,fb-bf塔的細菌數(shù)量較f-bf塔有了很大程度上提升,古菌數(shù)量大致相當(dāng),f-bf塔的真菌數(shù)量明顯比fb-bf塔多出一個數(shù)量級。高通量測序結(jié)果表明,當(dāng)以817f/1196r為引物時,在接種單獨真菌來啟動的生物濾塔f-bf塔中,屬于zygomycota、hypocreales、saccharomycetales、eurotiales、conthreep目的菌株占據(jù)主導(dǎo)地位。在真菌+細菌復(fù)合菌種啟動的生物濾塔fb-bf塔中,屬于chaetothyriales、tremellales、hypocreales、eurotiales目的菌株占據(jù)主導(dǎo)地位。當(dāng)以338f/806r為引物時,在接種單獨真菌來啟動的生物濾塔f-bf塔中,屬于burkholderiales、xanthomonadales、lactobacillales目的菌占據(jù)主導(dǎo)地位。在真菌+細菌復(fù)合菌種啟動的生物濾塔FB-BF塔中,屬于Burkholderiales、Corynebacteriales、Rhodospirillales、Xanthomonadales目的菌占據(jù)主導(dǎo)地位。
[Abstract]:Toluene VOCs is widely used in chemical and pharmaceutical industries, such as dyes, medicine, pesticides, organic synthesis, and other chemical and pharmaceutical industries, which have more stable chemical properties, biological accumulation and biological toxicity, and have different harmful effects on human body. It is one of the list of pollutants in the United States Environmental Protection Bureau (EPA). Because of its advantages of high efficiency, low energy consumption, mild reaction conditions and small two pollution, it has attracted more and more researchers' attention and exploration. This paper has screened a strain LW-1 which can take toluene as the only carbon source and energy, which is based on the form, physiological and biochemical characteristics of the strain, and the sequence analysis of the 18S RNA gene and its sequence analysis and The phylogenetic tree and Biolog identification can determine the strain of Trichoderma viride Trichoderma viride, initially judging its newly discovered strain of toluene. In the shake flask test, the fungal LW-1 has certain degradation ability to toluene, but the degradation efficiency is low and the degradation of toluene can not be completely degraded. The optimum growth condition for the LW-1 degradation of toluene is 30. The pH value is about 4.8. in the wide spectrum study of strain substrate. It is found that strain LW-1 has high degradation efficiency to ethyl acetate. In shake flask test, it is possible that the humidity in the bottle is too large and is not conducive to the growth and reproduction of fungi, because fungi generally prefer a more dry environment. In the biofilter, the strain LW-1 is used to inoculate the biofilter reaction. In order to study the intensifying effect of the strain, the biological filtration tower was started by the compound fungus composed of separate fungi and fungi and bacteria, and two towers (f-bf, fb-bf) were started to start the biofilter for 18 days. The removal efficiency is better and the maximum removal rate and maximum removal load are all under different operating conditions. This shows that the inoculation mode of "fungi + bacteria" has high removal performance, and the compound strain has obvious strengthening effect. The pagoda has obvious advantages. In this paper, the biological population structure, diversity and dynamic changes of two different biological filtration towers were studied by real time fluorescence quantitative PCR and high throughput sequencing. The real-time fluorescence quantitative PCR detection data showed that the bacteria in the f-bf tower were obviously less than those in the fb-bf tower. The number of bacteria, because streptomycin sulfate is added to the circulating nutrient solution in the f-bf tower, inhibits the growth of most of the bacteria. Two the number of bacteria in the tower is almost the same, but in the number of fungi, the number of fungi in the f-bf tower is about 2 times more than the number of fungi in the fb-bf tower. In the stable operation stage, the number of bacteria in the fb-bf tower is much more than that of the f-bf tower. The number of palaebacteria was approximately equal, and the number of fungi in the f-bf tower was more than one order of magnitude more than that of the fb-bf tower. High throughput sequencing results showed that when the primers were primed with 817f/1196r, the f-bf tower of the biofilter, which was initiated by the individual fungi, belonged to the main Zygomycota, hypocreales, Saccharomycetales, Eurotiales, and conthreep purposes. Chaetothyriales, Tremellales, hypocreales and Eurotiales are dominant in the biological filter tower fb-bf tower, which are activated by fungi + bacteria compound bacteria. When 338f/806r primers are primed, the biological filter tower f-bf tower, which is vaccinated by individual fungi, belongs to burkholderiales, xanthomonadales, lactobacillales orders. The bacteria occupy the dominant position. In the biological filter tower FB-BF tower which is activated by the fungal + bacteria compound bacteria, the Burkholderiales, Corynebacteriales, Rhodospirillales, and Xanthomonadales are dominant.
【學(xué)位授予單位】:浙江工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:X172;X701
【相似文獻】
相關(guān)期刊論文 前5條
1 李建軍;廖東奇;曾培源;許玫英;孫國萍;;凈化廢氣的生物過濾技術(shù)及其影響因素[J];微生物學(xué)通報;2013年09期
2 李晶;病樓的療法[J];國外科技動態(tài);1999年03期
3 姜安璽,王曉輝,劉波,相會強,閆波;硫系高效脫臭菌的分離及其特性研究[J];高技術(shù)通訊;2002年02期
4 ;項目推介[J];中國生物工程雜志;2007年12期
5 ;[J];;年期
相關(guān)會議論文 前5條
1 趙以軒;劉俊杰;賈媛;;生物過濾技術(shù)發(fā)展的回顧與展望[A];全國暖通空調(diào)制冷2010年學(xué)術(shù)年會資料集[C];2010年
2 席勁瑛;胡洪營;;不同填料生物過濾塔處理甲苯氣體性能的比較研究[A];第二屆全國惡臭污染測試及控制技術(shù)研討會論文集[C];2005年
3 席勁瑛;胡洪營;錢易;;生物過濾塔處理甲苯氣體的初步研究[A];惡臭污染測試與控制技術(shù)——全國首屆惡臭污染測試與控制技術(shù)研討會論文集[C];2003年
4 楊有泉;鄧素芳;陳敏;劉中柱;;畜禽養(yǎng)殖舍生物過濾除臭法影響因子的研究[A];2013中國環(huán)境科學(xué)學(xué)會學(xué)術(shù)年會論文集(第八卷)[C];2013年
5 丁云鶴;倪席標(biāo);;生物過濾濾池---凈水廠技術(shù)改造新技術(shù)及新方法[A];飲用水安全控制技術(shù)會議暨中國土木工程學(xué)會水工業(yè)分會給水委員會第13屆年會論文集[C];2013年
相關(guān)博士學(xué)位論文 前9條
1 陳宏;管式生物過濾的性能與機理研究[D];湖南大學(xué);2010年
2 席勁瑛;生物過濾塔處理揮發(fā)性有機物氣體的研究[D];清華大學(xué);2005年
3 舒明;工業(yè)規(guī)模生物過濾系統(tǒng)處理白肋煙加工尾氣的研究[D];浙江大學(xué);2008年
4 余健;生物過濾去除飲用水中有機物、鐵和錳的特性與機理研究[D];湖南大學(xué);2005年
5 劉永慧;生物過濾法凈化高濃度多組分VOCs工藝研究[D];大連理工大學(xué);2004年
6 吳丹;生物過濾法處理VOCs與NH_3混合氣的性能研究[D];大連理工大學(xué);2007年
7 王寶慶;生物過濾法凈化含苯系物廢氣的研究[D];西安建筑科技大學(xué);2004年
8 李建軍;含H_2S和VOCs廢氣的生物過濾過程研究[D];華南理工大學(xué);2012年
9 孫玉梅;生物過濾法去除氣態(tài)甲苯和乙酸乙酯的工藝和菌系狀態(tài)的研究[D];大連理工大學(xué);2002年
相關(guān)碩士學(xué)位論文 前10條
1 劉威;甲苯降解真菌選育及應(yīng)用其強化生物過濾運行性能研究[D];浙江工業(yè)大學(xué);2015年
2 姚遠;紫外光降解對生物過濾塔去除氯苯的影響機理研究[D];清華大學(xué);2009年
3 何元春;微污染飲用水生物過濾試驗研究[D];湖南大學(xué);2002年
4 張馨月;高溫和常溫生物過濾塔處理甲苯氣體的對比試驗研究[D];天津大學(xué);2012年
5 張長;生物過濾處理湘江微污染源水的特性研究[D];湖南大學(xué);2004年
6 孔鑫;高溫和常溫生物過濾塔降解甲苯性能及群落差異分析[D];天津大學(xué);2012年
7 張嫻;生物過濾塔微生物增殖規(guī)律及生物量化學(xué)控制方法的研究[D];中國地質(zhì)大學(xué)(北京);2006年
8 柏光明;微污染飲用水源生物過濾的效果與影響因素的研究[D];湖南大學(xué);2006年
9 褚淑yN;廢氣生物過濾系統(tǒng)熱質(zhì)遷移過程的數(shù)值模擬[D];浙江工業(yè)大學(xué);2006年
10 朱琳;間歇式生物凈化H_2S的性能研究[D];遼寧大學(xué);2012年
,本文編號:2006900
本文鏈接:http://sikaile.net/kejilunwen/huanjinggongchenglunwen/2006900.html