控制面源污染的分流制雨水調(diào)蓄池優(yōu)化研究
本文選題:控制面源污染 + 調(diào)蓄池。 參考:《太原理工大學(xué)》2015年碩士論文
【摘要】:時(shí)至今日,降雨初期所形成的面源污染在污染物排放重量中所占比重越來(lái)越高,控制面源污染已經(jīng)刻不容緩。在眾多控制面源污染的工程措施中,雨水調(diào)蓄池作為系統(tǒng)末端的關(guān)鍵設(shè)施其重要性不言而喻,F(xiàn)行的控污雨水調(diào)蓄池設(shè)計(jì)公式中參數(shù)的選取主要依賴經(jīng)驗(yàn),無(wú)法依照當(dāng)?shù)貙?shí)際情況進(jìn)行優(yōu)化設(shè)計(jì)。尋找方便、準(zhǔn)確的控污調(diào)蓄池設(shè)計(jì)方法是非常有必要的。 本研究在前人研究基礎(chǔ)上,對(duì)現(xiàn)行經(jīng)驗(yàn)計(jì)算公式進(jìn)行改良研究,并嘗試建立控污雨水調(diào)蓄池優(yōu)化設(shè)計(jì)技術(shù)框架體系,使研究人員可以更加全面的對(duì)分流制下雨水調(diào)蓄池的系統(tǒng)設(shè)計(jì)進(jìn)行綜合的優(yōu)化設(shè)計(jì)和決策。主要包括以下結(jié)論: (1)基于現(xiàn)行的降雨量估算調(diào)蓄池容積的計(jì)算公式基礎(chǔ)上,結(jié)合其他研究人員驗(yàn)證的降雨量-徑流系數(shù)、降雨量-徑流污染物濃度關(guān)系函數(shù),構(gòu)建了以既定污染物削減率及當(dāng)?shù)叵聣|面實(shí)際參數(shù)為基礎(chǔ)的面源污染控制分流制雨水調(diào)蓄池計(jì)算公式 其中:k'、A、B、C參數(shù)可參考本研究所提規(guī)程,經(jīng)當(dāng)?shù)貙?shí)驗(yàn)確定。 (2)在設(shè)定參數(shù)條件的基礎(chǔ)上,考察五種代表性下墊面對(duì)調(diào)蓄池設(shè)計(jì)池容的影響。在匯水面積及污染物削減率相同條件下,所需池容大小依次為:SBS不透水磚水泥路面草地透水磚,下墊面的透水性和含滯能力有利于減少控污所需池容。 (3)通過(guò)對(duì)比水泥和草地兩種下墊面上削減率增長(zhǎng)相同幅度時(shí)的池容增長(zhǎng)規(guī)律發(fā)現(xiàn),草地下墊面上削減率從70%提升到80%較20%提升到30%所增加的池容比例比水泥下墊面上更大。這可能是由于含滯能力更強(qiáng)的下墊面在削減過(guò)程后期其含滯能力有所下降導(dǎo)致。 (4)新建工程中,調(diào)蓄池下游污水管線應(yīng)以污水和排空雨水總量設(shè)計(jì),并以污水流量按照非滿流進(jìn)行校核,校核流速應(yīng)不低于該管徑最小流速。工程設(shè)計(jì)時(shí)可借助流量比、速度比與充滿度水力關(guān)系圖進(jìn)行快速手工求解。調(diào)蓄池最長(zhǎng)放空模式可利用1440min設(shè)計(jì)雨型進(jìn)行分析,其排空時(shí)長(zhǎng)不應(yīng)長(zhǎng)于兩個(gè)間隔降雨時(shí)段開始階段,連續(xù)累積降深初次達(dá)到調(diào)蓄池收納雨量的時(shí)刻之間的間隔,最長(zhǎng)不應(yīng)長(zhǎng)于12h;最短應(yīng)保證旱流污水校核流速要求。 改造工程水泵的流量設(shè)定應(yīng)以下游管線的最大通行能力進(jìn)行核算,校核計(jì)算方法可采用 (5)以山西省西部XXX縣新城94.35ha區(qū)域進(jìn)行控污調(diào)蓄池設(shè)計(jì)案例研究,采用本研究提出的優(yōu)化計(jì)算方法,進(jìn)行兩方案設(shè)計(jì),并采用以投資環(huán)境效益比為目標(biāo)函數(shù)的優(yōu)化決策方法確定集中設(shè)置調(diào)蓄池為優(yōu)選方案。在面源污染削減率為50%的前提下,該區(qū)域需要建設(shè)池容為2600m3分流制調(diào)蓄池1座,工程投資約283萬(wàn),以SS為目標(biāo)污染物,削減效益約為1347元/噸。 (6)采用投資環(huán)境效益比作為參考,對(duì)污染物削減率提升的投資效益進(jìn)行考察發(fā)現(xiàn),當(dāng)削減率從50%提升至70%,,其投資環(huán)境效益比的增幅較30%提升至50%時(shí)下降了47.54%。采用提升末端控污設(shè)施容積來(lái)進(jìn)一步提升控污率的方法其經(jīng)濟(jì)性需進(jìn)一步考量。 (7)采用正交實(shí)驗(yàn)方法對(duì)污染物削減率、下墊面種類以及服務(wù)區(qū)域面積三個(gè)因素對(duì)于池體容積的影響程度進(jìn)行分析。案例條件下,三因素中對(duì)于設(shè)計(jì)池容大小的影響程度為:污染物削減率下墊面種類服務(wù)區(qū)域面積?紤]到實(shí)際工作中,服務(wù)匯水面積受到雨水管網(wǎng)敷設(shè)的限制無(wú)法變動(dòng),合理的設(shè)定區(qū)域污染物削減率將對(duì)工程的整體造價(jià)影響更為顯著,而采用對(duì)上游進(jìn)行下墊面改造的方法更適用于控污工程運(yùn)行后的改造。 (8)建立了以投資環(huán)境效益比為優(yōu)化目標(biāo)函數(shù),以工程基建投資、運(yùn)行費(fèi)用、折舊費(fèi)用、污染物削減總量為變量的單目標(biāo)四維最優(yōu)化體系,并提出以此作為控制面源污染系統(tǒng)工程的優(yōu)化決策方法。 (9)針對(duì)所研究計(jì)算方法,提出配套的實(shí)際參數(shù)試驗(yàn)確定技術(shù)規(guī)程、下游管道及污水處理設(shè)施的核算和設(shè)計(jì)要求、地區(qū)面源污染削減比確定、建成調(diào)蓄設(shè)施運(yùn)行后評(píng)估原則等技術(shù)方法,并確定以投資環(huán)境效益比為優(yōu)化目標(biāo)參數(shù)的優(yōu)化決策體系。以這些內(nèi)容形成完整的控制面源污染分流制雨水調(diào)蓄池計(jì)算的技術(shù)框架體系。
[Abstract]:Nowadays, the proportion of non-point source pollution in the initial stage of rainfall is becoming higher and higher, and it is very urgent to control the surface source pollution. In the engineering measures for controlling the source pollution, the importance of the rainwater storage pool as the key facility of the end of the system is very important. The selection of the medium parameters mainly depends on the experience and can not be optimized according to the local actual conditions. It is very necessary to find a convenient and accurate design method of the pollution control and storage pool.
On the basis of previous research, this research improves the current empirical formula, and tries to establish a technical framework system for the optimization design of the control water storage pool, so that the researchers can make a comprehensive optimization design and decision for the system design of the shunting water storage pool. The main conclusions are as follows:
(1) based on the current calculation formula of the volume of the storage tank for rainfall estimation, combined with the rainfall runoff coefficient and the relationship function of the rainfall runoff pollutant concentration verified by other researchers, the calculation of the rainwater storage pool based on the reduction rate of the established pollutants and the actual parameters of the ground surface as the basis of the actual parameters of the ground surface is constructed. formula
Among them, K', A, B and C parameters can be referred to the regulations mentioned in this study and determined by local experiments.
(2) on the basis of setting parameter conditions, the influence of the five representative cushions on the design pool capacity of the storage pool is investigated. Under the same condition of the water confluence area and the reduction rate of pollutants, the size of the pool is in turn: the permeable brick of the SBS unpermeable brick cement pavement, and the water permeability and the hysteresis of the underlying surface are beneficial to reduce the capacity of the pool for controlling pollution.
(3) it is found that the rate of reduction from 70% to 80% to 30% is higher than that in the cement underlay by comparing the growth rate of the cement and grassland on the two underlying surface, which is increased from 70% to 30%, which may be due to the lag of the lower hysteresis of the underlying surface in the later period of the reduction. There is a decline in ability.
(4) in the new project, the downstream sewage pipeline should be designed with the total amount of sewage and emptying water, and check the flow rate according to the non full flow. The checking flow rate should not be less than the minimum flow velocity of the pipe diameter. In the engineering design, the flow ratio, velocity ratio and the full hydraulic flow diagram can be solved quickly and manually. The longest Fang Kongmo in the storage pool The type of rain type can be analyzed by 1440min design. The length of emptying should not be longer than the beginning of two interval rainfall periods, and the continuous cumulative depth can first reach the interval between the time of rainfall in the storage tank, and the longest should not be longer than that of 12h.
The setting of the flow rate of the pump should be calculated according to the maximum capacity of the following pipeline, and the calculation method can be used.
(5) taking the design case study of the sewage control and storage tank in the 94.35ha area of the new town of XXX County in the west of Shanxi Province, the optimization calculation method proposed in this study was adopted, and the two scheme was designed, and the centralized storage pool was selected as the optimal scheme by the optimization decision method of the investment environmental benefit ratio as the objective function. The reduction rate of the source pollution was 50%. It is necessary to build a pool capacity of 1 reservoirs for the 2600m3 diversion system, with a project investment of about 2 million 830 thousand and a target pollutant of SS, with a reduction of about 1347 yuan / ton.
(6) the investment environmental benefit ratio is used as a reference to investigate the investment benefit of the increase in the reduction rate of pollutants. When the reduction rate is raised from 50% to 70%, the increase of the investment environmental benefit ratio is increased to 50% from 30% to 50%, and 47.54%. adopts the method of upgrading the terminal pollution control facilities to further improve the pollution control rate. Take a step.
(7) the influence degree of the pollutant reduction rate, the underlying surface type and the area of the service area three factors on the volume of the pool body is analyzed by orthogonal experimental method. Under the case conditions, the degree of influence of the three factors on the size of the design pool is: the area of the type of service area under the reduction rate of the pollutants. The area of the water supply area can not be changed by the limitation of the laying of the rainwater pipe network. The reasonable reduction rate of the regional pollutant will have a more significant impact on the overall cost of the project, and the method of upgrading the upper surface of the upstream is more suitable for the transformation after the operation of the pollution control project.
(8) a single objective four dimensional optimization system is established, which takes the investment environmental benefit ratio as the optimization objective function, with the investment of engineering infrastructure, the operating cost, the depreciation expense and the total amount of pollutant reduction as the variable, and puts forward the optimization decision method for the control of the system engineering of the non-point source pollution.
(9) in view of the calculation method, the technical rules for determining the actual parameters, the accounting and design requirements of the downstream pipelines and sewage treatment facilities, the reduction ratio of the area source pollution, the evaluation principle of the storage facilities after operation are established, and the optimization decision of the optimal target parameters is determined by the investment environmental benefit ratio. With these contents, a complete technical framework system for controlling the distribution of rainwater storage tanks with non-point source pollution is formed.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:X52;TU992
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 車伍,歐嵐,汪慧貞,李俊奇;北京城區(qū)雨水徑流水質(zhì)及其主要影響因素[J];環(huán)境污染治理技術(shù)與設(shè)備;2002年01期
2 劉燕;尹澄清;車伍;;植草溝在城市面源污染控制系統(tǒng)的應(yīng)用[J];環(huán)境工程學(xué)報(bào);2008年03期
3 馮偉;王建龍;車伍;;不同地表雨水徑流沖刷特性分析[J];環(huán)境工程學(xué)報(bào);2012年03期
4 李田;曾彥君;高秋霞;;蘇州河沿岸排水系統(tǒng)雨水調(diào)蓄池設(shè)計(jì)方案探討[J];給水排水;2008年02期
5 侯培強(qiáng);王效科;鄭飛翔;周小平;任玉芬;佟磊;;我國(guó)城市面源污染特征的研究現(xiàn)狀[J];給水排水;2009年S1期
6 許道坤;呂偉婭;;屋頂綠化技術(shù)在低影響開發(fā)中的作用[J];給水排水;2012年01期
7 丁年;胡愛(ài)兵;任心欣;;深圳市光明新區(qū)低影響開發(fā)市政道路解析[J];上海城市規(guī)劃;2012年06期
8 明月;明祥;;淺談?dòng)晁{(diào)蓄池的設(shè)置和計(jì)算[J];科技信息;2014年12期
9 廖朝軒;蔡耀隆;黃偉民;Cheng Mow-soung;;雨水滯蓄措施在城區(qū)減洪之水文機(jī)制及容量研究[J];水科學(xué)進(jìn)展;2006年04期
10 李小靜;李俊奇;戚海軍;孫昆鵬;宋瑞寧;;城市雨水徑流熱污染及其緩解措施研究進(jìn)展[J];水利水電科技進(jìn)展;2013年01期
本文編號(hào):1958564
本文鏈接:http://sikaile.net/kejilunwen/huanjinggongchenglunwen/1958564.html