耐鎘植物抗性及富集規(guī)律的研究
本文選題:多花黑麥草 + 孔雀草 ; 參考:《貴州大學(xué)》2015年碩士論文
【摘要】:隨著工業(yè)化的不斷擴(kuò)張、農(nóng)業(yè)中化肥、農(nóng)藥、除草劑的廣泛使用及礦山開采造成的污染日益威脅人們的生活和健康,土壤鎘(Cd)污染已經(jīng)成為全球最嚴(yán)重的環(huán)境問(wèn)題之一。很多國(guó)家對(duì)土壤重金屬污染非常重視,采取了多種修復(fù)方法,其中植物修復(fù)已成為世界各國(guó)爭(zhēng)相研究的熱點(diǎn),植物修復(fù)利用綠色植物的新陳代謝活動(dòng)來(lái)提取、降解、固定或揮發(fā)污染土壤環(huán)境中的重金屬污染物,是一種非常綠色環(huán)保的修復(fù)技術(shù),不僅保持污染現(xiàn)場(chǎng)土壤的結(jié)構(gòu),也可減少修復(fù)費(fèi)用。本研究以草本植物多花黑麥草(Lolium multiflorum L.)和孔雀草(Tagetes patula L.)為試驗(yàn)材料,通過(guò)盆栽試驗(yàn),研究不同梯度Cd脅迫對(duì)其種子萌發(fā)及幼苗期間生長(zhǎng)、成年植株生理抗逆性、Cd積累特性及葉片超微結(jié)構(gòu)的影響,以期挖掘出具有修復(fù)潛力的植物。研究結(jié)果如下:(1)多花黑麥草和孔雀草種子的萌發(fā)對(duì)Cd脅迫生理響應(yīng)程度不同,高濃度Cd脅迫會(huì)抑制植物的發(fā)芽指數(shù)和活力指數(shù),各處理間的活力指數(shù)隨Cd脅迫濃度的增加而顯著降低(P0.05)。兩者的根長(zhǎng)和苗長(zhǎng)隨Cd脅迫濃度的增加均逐漸縮短,在500 mg.L-1Cd脅迫下,兩者的根長(zhǎng)比對(duì)照分別顯著降低了92.00%、92.03%,兩者的苗長(zhǎng)分別比對(duì)照顯著降低了40.00%、55.68%,可見高濃度Cd脅迫對(duì)根的抑制作用尤為顯著。此外,隨Cd脅迫濃度的增加,兩者的CAT活性均先升后降;多花黑麥草的SOD活性先升后降、孔雀草的SOD活性先降后生再降,在100 mg.L-1Cd脅迫下多花黑麥草SOD的活性最大(150.26 U.g-1.min Fw),而孔雀草的SOD活性達(dá)到最大(149.83 U.g-1.min Fw)時(shí)的脅迫濃度為400mg.L-1。兩者的POD活性均表現(xiàn)為先升后降。可見2種植物幼苗的抗氧化系統(tǒng)對(duì)Cd脅迫產(chǎn)生不同程度的生理響應(yīng),在一定濃度Cd脅迫范圍內(nèi),植株可以通過(guò)提高自身體內(nèi)抗氧化酶的活性來(lái)清除自由基積累造成的傷害,而Cd脅迫濃度超過(guò)一定閾值,植物體內(nèi)的抗氧化酶活性降低,植物的耐受性降低。(2)Cd是植物光合作用的抑制劑,高濃度Cd(300 mg.kg-1)脅迫均可抑制多花黑麥草和孔雀草葉綠素的合成。隨Cd脅迫濃度的增加,2種植物的Fo先降后升;Fm、Fv/Fm和Fv/Fo先升后降。同時(shí)多花黑麥草葉片的ФPSⅡ、ETR、qP和qN均先升后降;孔雀草的ФPSⅡ、ETR、qP大體上是先升后降、qN大體上是升高的?梢姼邼舛菴d脅迫均能夠使2種草本植物葉片PSⅡ反應(yīng)中心受損,降低電子傳遞能力和光化學(xué)效率,影響及擾亂植物生長(zhǎng)期間的光合特性。(3)Cd脅迫同樣影響2種草本植物成年植株的抗氧化系統(tǒng),隨Cd脅迫濃度的增加,多花黑麥草的CAT活性先降后升,孔雀草的CAT活性先升后降,多花黑麥草和孔雀草的CAT活性達(dá)到最高的Cd濃度分別為300 mg.kg-1和50 mg.kg-1;多花黑麥草的SOD活性先升后降,在100 mg.kg-1Cd脅迫下的SOD活性最大(138.31 U.g-1.min-1Fw);孔雀草的SOD活性先降后生再降,在200 mg.kg-1Cd脅迫下的SOD活性最大(123.18 U.g-1.min-1Fw);兩者的POD活性均先升后降,兩種植物的POD活性達(dá)到最高的Cd濃度分別為200、50 mg.kg-1;兩者的脯氨酸和MDA含量存在差異,高濃度Cd(300 mg.kg-1)下孔雀草脯氨酸含量(15.40 ug.g-1 Fw)和MDA含量(6.88 nmol.g-1 Fw)顯著高于多花黑麥草(1.97 ug.g-1 Fw、6.1 nmol.g-1 Fw)。可見,不同植物對(duì)Cd脅迫表現(xiàn)出不同的生理抗逆性。(4)多花黑麥草和孔雀草地上部和地下部Cd含量隨Cd脅迫濃度的增加而逐漸升高,各處理間多花黑麥草組織內(nèi)Cd分布特征均表現(xiàn)為:地下部地上部,轉(zhuǎn)運(yùn)系數(shù)降低。在50mg.kg-1Cd濃度脅迫下,孔雀草根、莖和葉中Cd積累量分布特征表現(xiàn):葉莖根,根-莖轉(zhuǎn)運(yùn)系數(shù)(1.33)1,在300 mg.kg-1Cd濃度脅迫下,地上部Cd含量(135 mg.kg-1)已超過(guò)Cd超富集植物的臨界值,且孔雀草植株生長(zhǎng)過(guò)程中沒有出現(xiàn)明顯的毒害癥狀,由此可知,孔雀草是Cd超富集的特征植物。(5)多花黑麥草和孔雀草的葉片超微結(jié)構(gòu)在高濃度Cd(300 mg.kg-1)脅迫下發(fā)生不同程度的損傷。其中多花黑麥草葉肉中部分葉綠體膨脹成球形,基粒紊亂、基質(zhì)片層結(jié)構(gòu)溶解,嗜鋨顆粒增多,且出現(xiàn)相互聚集的現(xiàn)象,但大部分葉綠體內(nèi)部結(jié)構(gòu)還是正常的。而孔雀草葉綠體數(shù)量明顯減少,基粒及基質(zhì)片層幾乎看不清,同時(shí)葉綠體中出現(xiàn)巨型淀粉粒,嗜鋨顆粒增大,線粒體數(shù)目減少甚至消失。同時(shí)發(fā)現(xiàn),相同植物不同細(xì)胞中的相同細(xì)胞器受Cd脅迫損傷程度存在差異。
[Abstract]:With the continuous expansion of industrialization, the widespread use of chemical fertilizers, pesticides, herbicides and the pollution caused by mining are increasingly threatening people's life and health. The pollution of soil cadmium (Cd) has become one of the most serious environmental problems in the world. Many countries attach great importance to the pollution of soil heavy metals, and adopt a variety of remediation methods. Phytoremediation has become a hot spot in the world. Phytoremediation uses the metabolic activity of green plants to extract, degrade, fixed or volatilize the heavy metal pollutants in the soil environment. It is a very green environmental remediation technology, which not only maintains the soil structure of the contaminated site, but also reduces the cost of restoration. Herbaceous plants (Lolium multiflorum L.) and peacock grass (Tagetes patula L.) were tested as experimental materials. Through pot experiments, the effects of different gradient Cd stresses on Seed Germination and seedling growth, physiological resistance of adult plants, the accumulation of Cd and the ultrastructure of leaves were studied in order to excavate the plants with potential for restoration. The results were as follows: (1) the germination of the seeds of ryegrass and peacock grass had different physiological responses to Cd stress. High concentration of Cd stress could inhibit the germination index and vigor index of plants, and the vigor index of each treatment decreased significantly with the increase of Cd stress (P0.05). The root length and seedling length of both of them gradually increased with the increase of the concentration of Cd stress. Under the stress of 500 mg.L-1Cd, the root length of both of them decreased by 92%, 92.03% respectively, and the seedling length of both of them was significantly lower than the control by 40%, 55.68%, and the inhibitory effect of high concentration Cd stress on the root was particularly significant. In addition, the CAT activity of both of them increased first and then decreased with the increase of Cd stress, and the SOD activity of ryegrass was SOD. The SOD activity of the peacock grass decreased first and then descended, and the activity of SOD in ryegrass was the largest (150.26 U.g-1.min Fw) under 100 mg.L-1Cd stress, while the SOD activity of the peacock grass reached the maximum (149.83 U.g-1.min Fw) and the POD activity of both of them was first rising and then decreasing. The antioxidant activity of 2 plant seedlings was visible. The physiological response of the system to Cd stress is different. In a certain concentration of Cd stress, the plant can remove the damage caused by the free radical accumulation by improving the activity of antioxidant enzymes in the body, while the Cd stress concentration exceeds a certain threshold, the antioxidant enzyme activity in the plant is reduced and the plant tolerance is reduced. (2) Cd is the plant. Photosynthesis inhibitor, high concentration Cd (300 mg.kg-1) stress can inhibit the synthesis of chlorophyll of ryegrass and peacock grass. With the increase of Cd stress, the Fo of the 2 plants first descends and then rises, Fm, Fv/Fm and Fv/Fo first rise and then descend. It was first raised and then descended, and qN was generally elevated. It was found that high concentration of Cd stress could damage the PS II reaction center of the leaves of 2 herbaceous plants, reduce the electron transfer ability and photochemical efficiency, and disturb the photosynthetic characteristics during plant growth. (3) Cd stress also affects the antioxidant system of the 2 plants of the plant, with the concentration of Cd stress. The CAT activity of Lolium multiflorum increased first and then increased, and the CAT activity of peacock grass first increased and then decreased. The CAT activity of ryegrass and peacock grass reached the highest Cd concentration of 300 mg.kg-1 and 50 mg.kg-1 respectively. The SOD activity of ryegrass was first increased and then decreased, and the maximum SOD activity under 100 mg.kg-1Cd stress (138.31 U.g-1.min-1Fw); peacock grass. The activity of SOD first descended and then descended, and the activity of SOD was the maximum (123.18 U.g-1.min-1Fw) under 200 mg.kg-1Cd stress, and the POD activity of both of them increased first and then decreased, and the highest POD activity of the two plants was 200,50 mg.kg-1, respectively, and the proline and MDA content of both of the two was different, and the proline content of peacock grass under the high concentration Cd (300 mg.kg-1) was 15. The content of.40 ug.g-1 Fw) and MDA (6.88 nmol.g-1 Fw) was significantly higher than that of Lolium multiflorum (1.97 ug.g-1 Fw, 6.1 nmol.g-1 Fw). It can be seen that different plants showed different physiological stress resistance to Cd stress. (4) the Cd content in the upper and underground meadows of ryegrass and peacock increased with the increase of coerced concentration. The distribution characteristics of Cd in the weave were all: the transport coefficient of the upper part of the ground was reduced. The distribution characteristics of Cd accumulation in the root, stem and leaf of the peacock were characterized by 50mg.kg-1Cd concentration stress: the leaf stem root, the root and stem transport coefficient (1.33) 1, and the Cd content in the upper part of the ground (135 mg.kg-1) under the stress of 300 mg.kg-1Cd, which had exceeded the critical value of the Cd hyperconcentration plant. There are no obvious toxic symptoms in the growth process of the plants of the peacock grass. Thus, it is known that the peacock grass is a characteristic plant of Cd superconcentration. (5) the ultrastructure of the leaves of ryegrass and peacock grass have different degrees of damage under the stress of high concentration of Cd (300 mg.kg-1). The structure of the stroma layer dissolves, the osmium granules increase and the osmium particles increase, and the internal structure of most chloroplasts is normal, but the number of chloroplasts in the chloroplasts is obviously reduced, the grana and the matrix layer are almost invisible, and the chloroplasts appear in the giant amylin particles, the osmium particles increase, the number of mitochondria decreases or even disappear. Meanwhile, it was found that the same organelles in different cells of the same plant were damaged by Cd stress.
【學(xué)位授予單位】:貴州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:X173;X53
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王宇濤;辛國(guó)榮;楊中藝;陳三有;;多花黑麥草的應(yīng)用研究進(jìn)展[J];草業(yè)科學(xué);2010年03期
2 朱志勇;郝玉芬;李友軍;劉英杰;段有強(qiáng);李強(qiáng);郭甲;;鎘對(duì)小麥旗葉葉綠素含量及籽粒產(chǎn)量的影響[J];核農(nóng)學(xué)報(bào);2011年05期
3 何毅,袁均林,周詩(shī)毅,張偉;SOD模型化合物(MSOD)對(duì)幾種蔬菜抗氧化酶活性,葉綠素及脯氨酸含量的影晌[J];華中師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年01期
4 李玉雙;孫麗娜;孫鐵珩;王洪;;超富集植物葉用紅凗菜(Beta vulgaris var.cicla L.)及其對(duì)Cd的富集特征[J];農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào);2007年04期
5 胡鵬杰;周小勇;仇榮亮;湯葉濤;應(yīng)蓉蓉;;Zn超富集植物長(zhǎng)柔毛委陵菜對(duì)Cd的耐性與富集特征[J];農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào);2007年06期
6 王艷杰,傅樺;晚近10年來(lái)土壤重金屬污染植物修復(fù)研究[J];首都師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年S1期
7 張葉;沈宇;;不同重金屬離子對(duì)小麥種子萌發(fā)及葉綠素合成影響的比較研究[J];生物學(xué)教學(xué);2009年04期
8 羅巧玉;王曉娟;林雙雙;李媛媛;孫莉;金j;;AM真菌對(duì)重金屬污染土壤生物修復(fù)的應(yīng)用與機(jī)理[J];生態(tài)學(xué)報(bào);2013年13期
9 冉烈;李會(huì)合;;土壤鎘污染現(xiàn)狀及危害研究進(jìn)展[J];重慶文理學(xué)院學(xué)報(bào)(自然科學(xué)版);2011年04期
10 王興明;涂俊芳;李晶;王立龍;劉登義;;鎘處理對(duì)油菜生長(zhǎng)和抗氧化酶系統(tǒng)的影響[J];應(yīng)用生態(tài)學(xué)報(bào);2006年01期
相關(guān)碩士學(xué)位論文 前1條
1 裴昕;龍葵對(duì)土壤鎘污染的修復(fù)效應(yīng)及其調(diào)控機(jī)理[D];上海交通大學(xué);2007年
,本文編號(hào):1889427
本文鏈接:http://sikaile.net/kejilunwen/huanjinggongchenglunwen/1889427.html