厭氧氨氧化反應(yīng)器的啟動優(yōu)化和過程調(diào)控研究
本文選題:厭氧氨氧化 + 零價鐵; 參考:《山東大學》2015年碩士論文
【摘要】:厭氧氨氧化工藝可在氮循環(huán)中實現(xiàn)“短程”現(xiàn)象,以亞硝態(tài)氮作電子受體直接將氨氮氧化成氮氣,無需提供有機碳源和氧氣,工藝流程短、運行費用低、運行調(diào)控簡單,同時避免了CO2、N2O等溫室氣體的產(chǎn)生,實現(xiàn)了高效低耗,在可持續(xù)發(fā)展及循環(huán)經(jīng)濟方面具有廣闊前景。但受限于菌種自身一些缺點和問題,該工藝的進一步推廣及應(yīng)用受到了顯著影響。一是厭氧氨氧化菌的倍增時間(t1/2=ln 2/μmax)約為11天,最大生長比速率(μmax)也僅為0.065 d-1,啟動耗時較長。二是厭氧氨氧化菌需要嚴格的生長代謝環(huán)境,如溶解氧大于0.5 mg/L時即能抑制厭氧氨氧化活性。隨著認識的不斷深入和研究的不斷發(fā)展,研究人員已經(jīng)探索設(shè)計出了一系列可用于厭氧氨氧化快速啟動的方案,主要思路如下:(1)改進或構(gòu)建合適的反應(yīng)器,盡可能減少其中生物量的流失:(2)創(chuàng)造合適的培養(yǎng)環(huán)境和培養(yǎng)條件,優(yōu)化其生長代謝的環(huán)境;(3)選取適宜的接種污泥,提高接種污泥的質(zhì)量。本論文擬從改良培養(yǎng)生境和強化截留污泥能力的角度出發(fā),對厭氧氨氧化工藝的啟動優(yōu)化及過程調(diào)控進行研究,以期為該工藝的推廣應(yīng)用提供理論支持及技術(shù)參考。一方面,通過向反應(yīng)器內(nèi)投加零價鐵(ZVI)來強化厭氧氨氧化反應(yīng)器,零價鐵可促進微生物生長增殖,還可通過還原能力消耗溶解氧,創(chuàng)造最適生境,從而縮短厭氧氨氧化的啟動用時并提高氮素去除負荷。另一方面,通過采用新型無紡布MBR,減少污泥流失,實現(xiàn)生物量保持,從而加速厭氧氨氧化啟動,并通過生物膜的作用提高氮素去除負荷。同時針對二者存在的污泥流失和總氮去除率低問題,構(gòu)建ZVI組裝厭氧氨氧化反應(yīng)器(下端固定海綿鐵,上端固定聚酯海綿),在實現(xiàn)污泥截留的同時,提高總氮去除率。主要結(jié)論如下:(1) 投加零價鐵(微米級零價鐵mZVI、納米級零價鐵nZVI)可顯著加速啟動厭氧氨氧化工藝,特別是nZVI,可在84天內(nèi)完成啟動,用時縮短約33%。零價鐵的投加可顯著增加微生物在厭氧氨氧化成熟階段的胞外聚合物分泌量,其中nZVI效果尤為顯著。150天時,投加mZVI和nZVI的反應(yīng)器內(nèi)微生物EPS量分別達142.8和149.3 mg/g VSS。零價鐵的投加還可顯著促進厭氧氨氧化菌的增殖,qPCR結(jié)果顯示:投加nZVI和nZVI可使厭氧氨氧化片段數(shù)由1.82×107增高至1.09×108和1.44×108 copies/ml。(2) 兩種MBR均可有效減少生物量流失,運行時間內(nèi)1tMBR出水SS均小于15 mg/L; nMBR出水SS均小于35 mg/L,形成附著生物膜后,其出水SS可降低至7 mg/L。使用tMBR在56天可實現(xiàn)厭氧氨氧化啟動,但其氮素去除效率不穩(wěn)定;而]MBR44天即可實現(xiàn)啟動,隨HRT的縮短,在短暫波動后即可穩(wěn)定脫氮,氮去除負荷最高可達245.4 mgN/L/d。與tMBR相比,使用nMBR可形成明顯生物膜,后期幾乎不存在懸浮態(tài)污泥。(3) 使用新型ZVI組裝反應(yīng)器可在低氮素負荷條件下,16天內(nèi)兩反應(yīng)器均實現(xiàn)厭氧氨氧化活性恢復(fù)。在較高污泥濃度條件下,該新型反應(yīng)器特別是負載有海綿鐵的R1對冬季低溫和突變氮負荷均有較強的適應(yīng)能力,氮素去除負荷可達1100mgN/L/d。綜上,本論文的研究將為解決我國水環(huán)境中的氮素污染問題提供了新思路和新方法,并為厭氧氨氧化工藝的進一步推廣應(yīng)用提供理論參考和技術(shù)支持。
[Abstract]:Anaerobic ammonia oxidation process can realize "short range" phenomenon in nitrogen cycle. It can oxidize ammonia nitrogen into nitrogen directly with nitrite nitrogen as electron acceptor, without providing organic carbon source and oxygen. The process is short, operation cost is low, operation regulation is simple, CO2, N2O and other greenhouse gases are avoided, high efficiency and low consumption are realized, and sustainable development is achieved. The further popularization and application of the process have been greatly influenced by the disadvantages and problems of the bacteria. One is that the multiplication time of the anaerobic ammonia oxidizing bacteria (t1/2=ln 2/ Mu max) is about 11 days, the maximum growth ratio (max) is only 0.065 D-1, and the start time is longer. Two is anaerobic ammonia oxidation. Bacteria need strict growth and metabolic environment, such as dissolved oxygen more than 0.5 mg/L can inhibit the activity of anaerobic ammonia oxidation. With the deepening of understanding and the continuous development of research, researchers have explored a series of schemes which can be used for rapid anaerobic ammonia oxidation. The main ideas are as follows: (1) improve or build appropriate reaction. To minimize the loss of biomass: (2) create a suitable culture environment and culture conditions, optimize the environment for its growth and metabolism, and (3) select the suitable inoculation sludge to improve the quality of the inoculated sludge. This paper is to optimize the start-up of the anaerobic ammonia oxidation process from the angle of improving the cultivation of the habitat and strengthening the energy of the sludge interception. On the one hand, by adding zero valent iron (ZVI) to the reactor to strengthen the anaerobic ammonia oxidation reactor, the zero valent iron can promote the growth and proliferation of microorganism, and can also consume the dissolved oxygen by reducing the energy to create the optimum habitat, thus shortening the anaerobic condition. On the other hand, the new non-woven fabric MBR is used to reduce the sludge loss and maintain the biomass, thus accelerating the anaerobic ammonia oxidation start, and improving the nitrogen removal load through the role of the biofilm. At the same time, the sludge loss and the total nitrogen removal rate in the two cases are low, and the ZVI is constructed. The main conclusions are as follows: (1) the addition of zero valent iron (micron zero valent iron mZVI, nanoscale zero valent iron nZVI) can significantly accelerate the start-up of anammox process, especially nZVI, which can be completed within 84 days. The addition of approximately 33%. zero valent iron can significantly increase the extracellular polymer secretion of microorganism at the stage of anaerobic ammonia oxidation maturation, in which the effect of nZVI is particularly significant at.150 days. The addition of EPS in the reactor of mZVI and nZVI to 142.8 and the addition of 149.3 mg/g VSS. zero valent iron can also significantly promote the anaerobic ammonia oxidizing bacteria. Proliferation, qPCR results show that adding nZVI and nZVI can increase the number of anammox fragments from 1.82 x 107 to 1.09 * 108 and 1.44 x 108 copies/ml. (2) two MBR to reduce the loss of biomass effectively. The 1tMBR effluent SS in operation time is less than 15 mg/L, nMBR effluent SS is less than 35 mg/ L, and after the formation of an attached biofilm, the effluent can be reduced to 7 G/L. can start anaerobic ammonia oxidation at 56 days with tMBR, but its nitrogen removal efficiency is unstable, and]MBR44 days can be realized. With the shortened HRT, the nitrogen removal can be stabilized after a short wave. The maximum nitrogen removal load can reach 245.4 mgN/L/d. compared with tMBR, and nMBR can form a distinct biofilm with nMBR, and there is almost no suspended sludge in the later period. (3) using a new ZVI assembly reactor under low nitrogen load conditions, the activity of anaerobic ammonia oxidation was recovered in the two reactor in 16 days. Under the condition of high sludge concentration, the new reactor, especially the R1 loaded with spongy iron, had strong adaptability to winter low temperature and mutant nitrogen load, and the nitrogen removal load could reach 1100mgN/L/. In D., the research of this paper will provide new ideas and new methods for solving the problem of nitrogen pollution in water environment in China, and provide theoretical reference and technical support for the further popularization and application of anaerobic ammonia oxidation process.
【學位授予單位】:山東大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:X703
【參考文獻】
相關(guān)期刊論文 前10條
1 李九一;李麗娟;;中國水資源對區(qū)域社會經(jīng)濟發(fā)展的支撐能力[J];地理學報;2012年03期
2 代瑞華;馬捷汀;;改性沸石吸附氨氮及電化學再生研究[J];安全與環(huán)境學報;2012年01期
3 范文軍;寧站亮;劉勇誠;;我國水資源現(xiàn)狀探討[J];北方環(huán)境;2011年07期
4 吳舜澤;;“十二五”為什么要控制氨氮[J];中國建設(shè)信息(水工業(yè)市場);2010年05期
5 姚軍朋;朱新華;;吹脫法處理稀土氯銨廢水的實驗研究[J];化工技術(shù)與開發(fā);2010年04期
6 ;An innovative membrane bioreactor and packed-bed biofilm reactor combined system for shortcut nitrification-denitrification[J];Journal of Environmental Sciences;2009年05期
7 白雁冰;;折點加氯法脫氨氮后余氯的脫除[J];環(huán)境科學與管理;2008年11期
8 陳啟華;羅冬浦;梁江浩;肖賢明;;磷酸銨鎂法脫除廢水中氨氮的技術(shù)現(xiàn)狀[J];工業(yè)水處理;2008年06期
9 葉建鋒;徐祖信;薄國柱;;新型生物脫氮工藝——OLAND工藝[J];中國給水排水;2006年04期
10 龐鵬沙,董仁杰;淺議中國水資源現(xiàn)狀與對策[J];水利科技與經(jīng)濟;2004年05期
相關(guān)博士學位論文 前2條
1 徐光景;基于化學法控制的亞硝化與厭氧氨氧化的耦合工藝研究[D];大連理工大學;2013年
2 劉思彤;電/磁場強化厭氧氨氧化及多菌群協(xié)同自養(yǎng)生物脫氮[D];大連理工大學;2009年
,本文編號:1858130
本文鏈接:http://sikaile.net/kejilunwen/huanjinggongchenglunwen/1858130.html