富里酸對(duì)深型地下土壤滲濾系統(tǒng)中反硝化過程的影響研究
本文選題:深型土壤滲濾系統(tǒng) + 富里酸。 參考:《武漢理工大學(xué)》2015年碩士論文
【摘要】:傳統(tǒng)的地下土壤滲濾系統(tǒng)對(duì)污水中有機(jī)物及磷去除效果較好,但是由于反硝化區(qū)域缺乏碳源而使脫氮效果不足。傳統(tǒng)的外加碳源由于存在各種問題,導(dǎo)致其使用受到限制。有研究發(fā)現(xiàn),難降解的類富里酸在地下土壤滲濾系統(tǒng)1.3m處發(fā)生了降解,轉(zhuǎn)化為類蛋白物質(zhì),并且在此處,反硝化過程得到了明顯的促進(jìn)。為了探明富里酸在地下土壤滲濾系統(tǒng)的降解規(guī)律和其對(duì)反硝化過程的作用機(jī)制,本次實(shí)驗(yàn)采用直徑為0.3m,高2.4m的有機(jī)玻璃柱模擬深層地下土壤滲濾系統(tǒng),土壤層高度共2.0m,并從北京阿蘇衛(wèi)衛(wèi)生填埋場(chǎng)的滲濾液中提取富里酸,對(duì)比加入富里酸前后,地下土壤滲濾系統(tǒng)對(duì)自配的生活污水中的污染物的去除效果。實(shí)驗(yàn)設(shè)計(jì)水力負(fù)荷為8cm/d。在加入富里酸之前,系統(tǒng)出水的總磷、COD、總氮和氨氮的濃度分別為0.068mg/L、51.02mg/L、18.26mg/L和0.68mg/L,去除率分別為98.78%、85.47%、66.38%和97.96%。根據(jù)污水中氮沿土壤深度的變化規(guī)律發(fā)現(xiàn),在系統(tǒng)表層0~0.2m區(qū)域內(nèi),主要發(fā)生有機(jī)物的好氧分解過程,硝化作用被抑制,在0.2~1.1m區(qū)域,主要發(fā)生硝化反應(yīng),而在1.1~2.0m區(qū)域,主要發(fā)生反硝化脫氮作用,脫氮量為5.42mg/L,占系統(tǒng)總脫氮量的9.98%。結(jié)合三維熒光圖譜和平行因子分析法對(duì)系統(tǒng)中有機(jī)物的沿程變化規(guī)律進(jìn)行研究發(fā)現(xiàn),在1.1m之前,類蛋白物質(zhì)一直減少,而類富里酸一直積累,僅在1.1m處,有很少量的類富里酸轉(zhuǎn)化為可被微生物利用的類蛋白物質(zhì),并且在立刻被消耗之后,類蛋白含量一直不變,說明是有機(jī)物的缺乏限制了反硝化過程。加入富里酸之后,系統(tǒng)出水總磷、COD、總氮和氨氮的濃度分別為0.051mg/L、58.37mg/L、18.15mg/L和0.49mg/L,去除率分別為99.22%、87.41%、74.86%和98.72%,可以發(fā)現(xiàn),系統(tǒng)的脫氮效率明顯提升,脫氮量由36.05mg/L增至54.04mg/L。系統(tǒng)中氮的變化趨勢(shì)與加入富里酸之前相似,在系統(tǒng)表層0-0.2m區(qū)域內(nèi),主要發(fā)生有機(jī)物的好氧分解過程,硝化作用被抑制。在0.2~1.4m區(qū)域,主要發(fā)生硝化反應(yīng),而在1.1~2.0m區(qū)域,主要發(fā)生反硝化脫氮作用,脫氮量為7.20mg/L,占系統(tǒng)總脫氮量的13.32%,比加入富里酸之前脫氮量提高了1.78mg/L,反硝化脫氮的去除效率提高了32.84%,結(jié)合三維熒光圖譜和平行因子分析法對(duì)系統(tǒng)中有機(jī)物的沿程變化規(guī)律進(jìn)行研究發(fā)現(xiàn),在1.4m處,有一部分類富里酸發(fā)生降解,轉(zhuǎn)化為可被微生物利用的類蛋白物質(zhì),并且馬上被利用。系統(tǒng)脫氮效率和脫氮量也因此有所提高,說明,富里酸在一定程度上可以發(fā)揮緩釋碳源的作用,促進(jìn)反硝化脫氮過程。
[Abstract]:The traditional underground soil leachate system has better removal effect of organic matter and phosphorus in sewage, but the denitrification effect is insufficient because of the lack of carbon source in denitrification area. The use of conventional external carbon sources is restricted due to various problems. It was found that the refractory fulvic acid-like acid was degraded at 1.3m in underground soil leachate system and converted into protein-like substance, where the denitrification process was obviously promoted. In order to find out the degradation rule of fulvic acid in underground soil leachate system and the mechanism of its action on denitrification process, an organic glass column with diameter of 0.3 m and a height of 2.4 m was used to simulate the deep soil infiltration system in this experiment. The soil layer height was 2. 0 m. Fulvic acid was extracted from leachate of Beijing Asuwei Sanitary Landfill. The effect of underground soil leachate system on the removal of pollutants in domestic sewage was compared before and after the addition of fulvic acid. The designed hydraulic load is 8 cm / d. Before the addition of fulvic acid, the concentrations of total phosphorus (COD), total nitrogen (TN) and ammonia nitrogen (NH3-N) in effluent were 0.068 mg / L, 51.02 mg / L, 18.26 mg / L and 0.68 mg / L, respectively, and the removal rates were 98.78 mg / L, 85.47%, 66.38% and 97.96 mg / L, respectively. According to the variation rule of nitrogen in sewage along the soil depth, the aerobic decomposition process of organic matter was mainly occurred in the 0.2m area of the surface layer of the system, nitrification was inhibited, nitrification occurred mainly in the area of 0.2 ~ 1.1m, but in the area of 1.1 ~ 2.0 m. The denitrification rate was 5.42 mg / L, accounting for 9.98% of the total denitrification. In combination with three dimensional fluorescence spectra and parallel factor analysis, the changes of organic matter in the system were studied. It was found that before 1.1 m, the protein-like substances decreased, while the fulvic acid-like acid accumulated only at 1.1 m. A small amount of fulvic acid was converted into protein-like substances that can be used by microbes, and the content of protein-like substances remained unchanged after being consumed immediately, indicating that the lack of organic compounds limited the denitrification process. After the addition of fulvic acid, the concentration of total phosphorus, total nitrogen and ammonia nitrogen in effluent were 0.051 mg / L, 58.37 mg / L and 0.49 mg / L, respectively, and the removal rates were 99.22g / L, 87.41% and 98.722%, respectively. It was found that the denitrification efficiency of the system was obviously improved, and the denitrification amount was increased from 36.05mg/L to 54.04 mg / L, respectively. The change trend of nitrogen in the system is similar to that before the addition of fulvic acid. In the surface layer of the system, the aerobic decomposition process of organic matter occurs mainly and nitrification is inhibited in the 0-0.2 m region of the surface layer of the system. Nitrification occurred mainly in the region of 0.2 ~ 1.4m, while denitrification occurred mainly in the region of 1.1 ~ 2.0m. The amount of nitrogen removal was 7.20 mg / L, which accounted for 13.32% of the total denitrification of the system, which was 1.78 mg / L higher than that before the addition of fulvic acid, and the removal efficiency of denitrification increased 32.84%. The study found that, At 1.4 m, some fulvic acids were degraded and converted into protein-like substances that can be used by microbes. The nitrogen removal efficiency and denitrification amount of the system were also improved, which indicated that fulvic acid could play the role of slow release carbon source to a certain extent and promote denitrification and denitrification process.
【學(xué)位授予單位】:武漢理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:X703
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 裴廷權(quán);王波;劉歡;;固體緩釋碳源處理低碳氮比污水的脫氮及機(jī)理[J];環(huán)境工程學(xué)報(bào);2014年06期
2 王麗君;劉玉忠;張列宇;席北斗;夏訓(xùn)峰;劉亞茹;孟繁華;;深型地下土壤滲濾系統(tǒng)中氮的去除途徑[J];環(huán)境工程學(xué)報(bào);2013年11期
3 王麗君;劉玉忠;張列宇;席北斗;夏訓(xùn)峰;劉亞茹;;地下土壤滲濾系統(tǒng)中溶解性有機(jī)物組成及變化規(guī)律研究[J];光譜學(xué)與光譜分析;2013年08期
4 王迎;李紅;;半纖維素酶處理絲瓜絡(luò)纖維結(jié)構(gòu)分析[J];大連工業(yè)大學(xué)學(xué)報(bào);2012年02期
5 吳婷;雷中方;王悅超;史舟;;兩級(jí)土壤滲濾系統(tǒng)對(duì)高含氮有機(jī)廢水的處理效果研究[J];復(fù)旦學(xué)報(bào)(自然科學(xué)版);2011年05期
6 李軍;張淑亞;馮雷;姚松濤;楊雙;;利用不同碳源包埋反硝化菌去除地下水中硝酸鹽[J];沈陽建筑大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年05期
7 邵留;徐祖信;王晟;金偉;尹海龍;;新型反硝化固體碳源釋碳性能研究[J];環(huán)境科學(xué);2011年08期
8 楊利偉;黃廷林;周岳溪;王海燕;梁娟;;農(nóng)村分散式污水處理的適宜技術(shù)[J];安徽農(nóng)業(yè)科學(xué);2011年15期
9 李國朝;張新華;陳捷;楊濤;;以玉米芯為碳源和生物膜載體的反硝化反應(yīng)器啟動(dòng)性能研究[J];安徽農(nóng)業(yè)科學(xué);2011年10期
10 文輝;陳云峰;高良敏;;不同碳源材料用于污水廠尾水生物反硝化碳源的效果研究[J];環(huán)境科學(xué)學(xué)報(bào);2011年03期
相關(guān)博士學(xué)位論文 前1條
1 聶俊英;改良的地下滲濾系統(tǒng)處理污水及相關(guān)機(jī)理研究[D];上海交通大學(xué);2011年
相關(guān)碩士學(xué)位論文 前3條
1 李會(huì)杰;腐殖酸和富里酸的提取與表征研究[D];華中科技大學(xué);2012年
2 崔程穎;新型人工強(qiáng)化土地滲濾系統(tǒng)工藝及技術(shù)研究[D];同濟(jì)大學(xué);2007年
3 劉曉寧;地下滲濾系統(tǒng)處理生活污水的實(shí)驗(yàn)研究[D];西安理工大學(xué);2005年
,本文編號(hào):1834835
本文鏈接:http://sikaile.net/kejilunwen/huanjinggongchenglunwen/1834835.html