Fenton氧化絮凝處理垃圾滲濾液中腐殖酸的研究
本文選題:Fenton + 氧化 ; 參考:《中國礦業(yè)大學》2015年碩士論文
【摘要】:本研究通過Fenton氧化絮凝處理垃圾滲濾液中腐殖酸開展了一系列的實驗,主要分為三部分進行研究。第一部分,考察垃圾滲濾液腐殖酸的物化和凝聚沉降特性,結(jié)果表明:腐殖酸是一種復雜的有機物,主要由C和O元素組成,含有多種官能團,有羧基、酚基、芳香環(huán)等。2009年填埋的垃圾滲濾液中腐殖酸(簡稱09HA)中含有的酸性基團,羧基、酚羥基較2006年填埋的垃圾滲濾液中腐殖酸(簡稱06HA)的多,且它們結(jié)構(gòu)不同,元素含量不同,分子量及粒度都不同。可見不同填埋時間下垃圾滲濾液中腐殖酸的復雜性。且用氯化鐵和亞鐵為絮凝劑處理兩種腐殖酸時,對高濃度的腐殖酸絮凝沉降效果都差?紤]到實際的垃圾滲濾液情況,添加幾種主要的組分進行試驗,結(jié)果是氨氮對絮凝去除腐殖酸有一定的促進作用;堿度、EDTA、檸檬酸三鈉抑制腐殖酸的去除,絮凝效果差。第二部分,通過Fenton氧化絮凝來考察對高濃度腐殖酸的處理效果,實驗結(jié)果表明,(1)Fenton氧化絮凝處理腐殖酸的初步實驗中,無論是低劑量亞鐵還是高劑量亞鐵,作用于兩種腐殖酸的效果不同,COD的去除率和過氧化氫添加量相關。COD氧化(CODoxid)去除率隨著過氧化氫的添加而增大,而COD絮凝(CODcoag)去除率則先增大后下降。09HA最佳COD去除率達到80%,TOC去除率達到60%;06HA的COD和TOC的去除率最大可達到83%。在Fenton處理中,09HA以氧化為主;06HA氧化降解難,主要是靠Fenton絮凝去除COD和TOC。(2)考察不同初始p H、亞鐵和過氧化氫條件下,對兩種腐殖酸的作用效果不同,實驗結(jié)果表明:在初始p H=5的條件下,對于06HA在亞鐵3 mmol/L,過氧化氫93.75 mmol/L時,COD和TOC去除率達到83%;對于09HA在亞鐵5 mmol/L,過氧化氫93.75 mmol/L時,COD去除率80%,TOC去除率65%。(3)Fenton氧化特性實驗:通過測定p H值、氧化還原電位(ORP)、溶解態(tài)鐵離子和H2O2濃度等在Fenton反應中(初始Fe2+濃度=10~200 mmol/L)的變化,考察了葡萄糖、苯酚等對Fenton反應過程的影響,分析了生成的次生鐵礦物。結(jié)果表明:初始Fe2+濃度≥50 mmol/L條件下的瞬時ORP和p H值隨H2O2:Fe2+摩爾比的增加呈現(xiàn)逐漸增加到快速降低的變化過程。初始葡萄糖和苯酚濃度=4.17 mmol/L和初始葡萄糖濃度=8.33 mmol/L條件下的H2O2基本耗盡時間分別為約15 min,10 min,2 min;初始苯酚濃度=8.33 mmol/L和初始葡萄糖和苯酚濃度=16.66mmol/L條件下的Fe2+濃度至60 min末分別為7.40,27.40,58.83 mmol/L。初始p H=3.3條件下Fenton反應形成的次生鐵礦物經(jīng)X射線衍射(XRD)分析初步鑒定為施氏礦物,其中添加葡萄糖或苯酚Fenton反應生成的球形次生鐵礦物其表面形成刺突。第三部分,考察了Fenton氧化絮凝腐殖酸的紅外光譜和絮體分形維數(shù)變化,試驗結(jié)果表明:通過紅外光譜測定Fenton氧化絮凝反應的分析,可知Fenton氧化對腐殖酸的官能團及絮凝有一定的影響。絮體分形維數(shù)中,在低劑量的亞鐵時,09HA的面積比06HA的大,維數(shù)大;高劑量亞鐵時,沒有回調(diào)p H為7時,絮凝06HA的比09HA的絮體大;而回調(diào)p H為7后,06HA和09HA的絮體都增大,維數(shù)增大?梢娽槍Σ煌母乘酕enton氧化絮凝的效果不同。
[Abstract]:In this study, a series of experiments were carried out to treat humic acid in landfill leachate by Fenton oxidation flocculation. It was divided into three parts. The first part, the physicochemical and coagulation characteristics of humic acid in landfill leachate were investigated. The results show that humic acid is a complex machine, mainly composed of C and O elements, and contains a variety of functional energy. In the landfill leachate, such as carboxyl, phenolic base and aromatic ring, the acid group, carboxyl group and phenolic hydroxyl group in the landfill leachate (09HA) in.2009 years are more than the humic acid (06HA) in the landfill leachate in 2006, and their structure is different, the content of the elements is different, the molecular weight and the grain size are different. The humic acid in the leachate is complex. When two humic acids are treated with ferric chloride and ferrous as flocculant, the effect of flocculating and settling of high concentration humic acid is poor. Taking into account the actual landfill leachate condition, several main components are added to experiment. The result is that ammonia nitrogen has a certain promotion effect on flocculation and removal of humic acid; alkalinity, EDTA The three sodium citrate inhibits the removal of humic acid and the flocculation effect is poor. The second part, through Fenton oxidation flocculation, investigates the treatment effect of high concentration humic acid. The experimental results show that (1) Fenton oxidation flocculation treatment of humic acid in the preliminary experiment, whether low dose ferrous or high dose ferrous, effect on two kinds of humic acid effect is different The removal rate of COD removal and the addition of hydrogen peroxide (CODoxid) removal rate increases with the addition of hydrogen peroxide, while COD flocculation (CODcoag) removal rate increases first and then decreases.09HA, the best COD removal rate reaches 80%, TOC removal rate reaches 60%, 06HA's COD and TOC removal rate can reach 83%. in the treatment. Main: 06HA oxidation degradation is difficult, mainly by Fenton flocculation to remove COD and TOC. (2) to investigate different initial P H, ferrous and hydrogen peroxide, the effect of the two kinds of humic acid is different. Experimental results show that, under the initial P H=5 conditions, for 06HA in ferrous 3 mmol/L, hydrogen peroxide 93.75 mmol/L, COD and removal rate of 83%; for When A was 5 mmol/L and 93.75 mmol/L hydrogen peroxide, the removal rate of COD was 80%, and the TOC removal rate was 65%. (3) Fenton oxidation experiment. The changes of P H value, redox potential (ORP), dissolved iron ion and H2O2 concentration in the Fenton reaction were investigated. The results showed that the instantaneous ORP and P H value of the initial Fe2+ concentration increased to a rapid decrease with the increase of the H2O2:Fe2+ molar ratio. The initial glucose and phenol concentration =4.17 mmol/L and the initial glucose concentration =8.33 mmol/L were basically depleted when the initial concentration of the initial concentration was more than 50 mmol/L. About 15 min, 10 min, 2 min, respectively, the concentration of initial phenol concentration =8.33 mmol/L and the initial glucose and phenol concentration =16.66mmol/L conditions are 7.40,27.40,58.83 mmol/L. initial P H=3.3 conditions, respectively, under the initial P H=3.3 condition. The surface of the globular sub pig iron mineral formed by the reaction of glucose or phenol Fenton forms a spiny surface. The third part, the infrared spectrum and the fractal dimension change of the flocculation humic acid of Fenton are investigated. The experimental results show that the analysis of the oxidation flocculation reaction of Fenton by the infrared spectrum is used to determine the functional groups of the humic acid by the Fenton oxidation and the analysis of the functional groups of the humic acid. Flocculation has a certain influence. In the fractal dimension of floc, the area of 09HA is larger and larger than that of 06HA in low dose ferrous. When high dose ferrous metals, when the P H is 7, flocculation 06HA is larger than that of 09HA, and the floc of 06HA and 09HA increases and the dimension increases after the return of P H is 7. Therefore, the flocculation of different humic acids will be oxidized and flocculated. The effect is different.
【學位授予單位】:中國礦業(yè)大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:X703
【參考文獻】
相關期刊論文 前8條
1 王毅力;盧佳;杜白雨;魏科技;石寶友;葛小鵬;;聚合氯化鐵-腐殖酸(PFC-HA)絮體的不同拓撲空間下分形維數(shù)的研究[J];環(huán)境科學學報;2008年04期
2 陳云嫩;劉春花;范景彪;丁麗超;;Fenton氧化降解垃圾滲濾液中COD的動力學研究[J];環(huán)境工程學報;2013年07期
3 李潤宣;李鴻雁;吳丹;施偉華;;PAC混凝沉降法處理垃圾滲濾液的研究[J];當代化工;2010年04期
4 沈小星,方士,王薇;飲用水消毒副產(chǎn)物的危害及控制工藝[J];水資源保護;2005年04期
5 李亞峰;王景新;劉莎;;微波強化腐殖酸-Fenton體系降解硝基苯廢水試驗[J];沈陽建筑大學學報(自然科學版);2013年01期
6 沈耀良,王寶貞;垃圾填埋場滲濾液的水質(zhì)特征及其變化規(guī)律分析[J];污染防治技術(shù);1999年01期
7 熊思江;劉瓊玉;張如月;王芬;;UV-Fenton體系氧化降解鄰氯苯酚廢水反應動力學研究[J];武漢科技大學學報(自然科學版);2007年05期
8 張興;符雪英;呂舒晴;桂旭;;高劑量亞鐵Fenton反應及形成次生鐵礦物的特性[J];中國礦業(yè)大學學報;2014年06期
相關博士學位論文 前1條
1 吳彥瑜;Fenton氧化和MAP化學沉淀工藝深度處理垃圾滲濾液[D];華南理工大學;2011年
相關碩士學位論文 前1條
1 李平;零價鐵—光助Fenton法預處理垃圾滲濾液的研究[D];合肥工業(yè)大學;2009年
,本文編號:1806010
本文鏈接:http://sikaile.net/kejilunwen/huanjinggongchenglunwen/1806010.html