還原條件下水鐵礦對(duì)鈣磷形態(tài)的影響
本文選題:水鐵礦 切入點(diǎn):鈣磷 出處:《華中農(nóng)業(yè)大學(xué)》2015年碩士論文
【摘要】:鐵磷和鈣磷是沉積物中兩種重要的磷形態(tài),對(duì)維持磷在水—沉積物界面的正常循環(huán)、調(diào)節(jié)水體的生產(chǎn)能力具有重要作用。水鐵礦是一種無(wú)定形氫氧化鐵,相比其它結(jié)晶態(tài)氧化鐵,比表面積更大,對(duì)磷固持能力更強(qiáng)。本實(shí)驗(yàn)?zāi)M沉積物環(huán)境條件下,從水鐵礦與無(wú)機(jī)磷、鈣反應(yīng)著手,研究厭氧條件下,水鐵礦被還原后,沉積物磷的形態(tài)遷移轉(zhuǎn)化過(guò)程。主要結(jié)果如下:(1)在還原過(guò)程中不添加磷酸二氫鉀溶液。在化學(xué)還原中,水溶性磷增加,飽和吸附鈣磷的水鐵礦表面直接轉(zhuǎn)化成磷灰石,未飽和吸附鈣磷的水鐵礦表面生成Fe Fe2(PO4)2(OH)2,Ca3(PO4)2·2H2O,Monetite(三斜磷鈣石)等形態(tài)的產(chǎn)物。吸附鈣磷較多的水鐵礦和吸附鈣磷較少的水鐵礦,在微生物還原中,水溶性鈣含量先增加后降低,磷的有效性降低產(chǎn)物以藍(lán)鐵礦為主,伴隨著弱結(jié)晶態(tài)的磷酸鈣鹽生成。(2)在還原過(guò)程中逐漸加入磷酸二氫鉀溶液。吸附Ca/P為1的水鐵礦表面逐漸生成結(jié)晶度較低的磷灰石,吸附Ca/P為1.67的水鐵礦表面,先生成以透鈣磷石為主的產(chǎn)物,后轉(zhuǎn)化為羥基磷灰石。而在純鈣和磷溶液反應(yīng)的體系中,生成無(wú)定形態(tài)的磷酸三鈣和透鈣磷石等混合物,后轉(zhuǎn)化為結(jié)晶度較高的羥基磷灰石。(3)KCl濃度越高,鈣的解吸量越大,在兩種Ca/P吸附值的水鐵礦表面磷的解吸量大小與KCl濃度高低無(wú)關(guān)。飽和吸附鈣磷的水鐵礦鈣解吸,0.1mol/L KCl解吸40h時(shí),鈣解吸量達(dá)166.3mg/g(水溶性鈣mg/總鈣g),鈣磷解吸量(物質(zhì)的量)之比約為0.55;解吸后的礦物主要以羥基磷灰石為主。未飽和吸附鈣磷的水鐵礦鈣解吸,0.1mol/L KCl解吸40h時(shí),鈣解吸量達(dá)892.8mg/g(水溶性鈣mg/總鈣g),解吸量是飽和吸附鈣磷的水鐵礦的5.4倍,鈣磷解吸量(物質(zhì)的量)之比約為2.7;解吸后礦物主要衍射峰變低或消失。(4)有鈣離子存在,抗壞血酸還原吸附鈣磷的水鐵礦,生成以磷鈣鐵羥基水合物、斜鈣磷鐵礦、三斜磷鈣鐵礦為主的結(jié)晶度較低的礦物,不生成藍(lán)鐵礦,再氧化后三斜磷鈣鐵礦的峰強(qiáng)減弱,抑制了鈣鐵磷化合物往穩(wěn)定形態(tài)轉(zhuǎn)化。
[Abstract]:Iron phosphorus and calcium phosphorus are two important forms of phosphorus in sediments, which play an important role in maintaining the normal circulation of phosphorus in the interface between water and sediment and regulating the production capacity of water body. Compared with other crystalline ferric oxide, the specific surface area of ferric oxide is larger and the fixation ability of phosphorus is stronger than that of other crystalline ferric oxide. The main results are as follows: no potassium dihydrogen phosphate solution was added to the reduction process. In chemical reduction, water soluble phosphorus increased, and the surface of water ore saturated with calcium and phosphorus was transformed directly into apatite. On the surface of water ore with unsaturated adsorption of calcium and phosphorus, Fe Fe _ 2o _ 4O _ 4H _ (2) O _ (2) O ~ (2 +) Ca _ (3) O _ (4) O _ (2) H _ (2) H _ (2) O _ (3) O _ (2) O _ (2) H _ (3) O _ (2) O _ (2) O _ (2) O _ (2) O _ (2) H _ (2) O _ (2) O _ (2) O _ (2). The degradation of phosphorus availability was dominated by bluestone, accompanied by the weak crystalline calcium phosphate formation. The potassium dihydrogen phosphate solution was added gradually during the reduction process. The surface of water ore with Ca/P = 1 gradually formed apatite with low crystallinity. On the surface of water ore adsorbed with Ca/P of 1.67, the product was formed as the main product of permeable calcium phosphate, and then converted into hydroxyapatite. In the reaction system of pure calcium and phosphorus solution, the amorphous mixture of tricalcium phosphate and permeable calcium phosphate was formed. The higher the KCl concentration of hydroxyapatite with higher crystallinity, the greater the desorption of calcium. The amount of phosphorus desorbed on the surface of two kinds of Ca/P adsorbed water is independent of the concentration of KCl. The desorption of calcium on the surface of water ore saturated with calcium and phosphorus is 0.1 mol / L KCl for 40 h. The amount of calcium desorbed was 166.3 mg / g (total Ca ~ (2 +) 路g ~ (-1) of water-soluble calcium mg/, the ratio of Ca ~ (2 +) ~ (P) desorption (mass) was about 0.55. The desorbed minerals were mainly hydroxyapatite. The desorption of calcium from unsaturated sorbed calcium and phosphorus was 0.1 mol / L KCl for 40 h. Calcium ions were present in the desorption capacity of 892.8 mg / g (water soluble calcium mg/ total calcium gn, the desorption amount was 5.4 times as much as the saturated sorption of calcium and phosphorus, and the ratio of calcium to phosphorus desorption was about 2.7; the main diffraction peak of the minerals after desorption decreased or disappeared. Ascorbic acid reduced the sorption of calcium and phosphorus to ferric hydroxyl hydrate, clinophosphorite, triorthophosphorite, and did not form blue iron ore. After reoxidation, the peak strength of tricophosphate calcium iron ore decreased. The transformation of calcium, iron and phosphorus compounds into stable form was inhibited.
【學(xué)位授予單位】:華中農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:P579;X52
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 翟由濤;;吸附法除磷研究進(jìn)展[J];安徽農(nóng)業(yè)科學(xué);2010年15期
2 熊善高;席北斗;魏丹;王玉峰;魏自民;宣鵬里;毛玉梅;;五大連池表層沉積物中不同形態(tài)磷的分布[J];環(huán)境科學(xué)與技術(shù);2011年09期
3 游雪靜;蘇玉萍;詹旋燦;莊一廷;陳友震;林婉珍;;微生物對(duì)杜塘水庫(kù)沉積物磷釋放的影響研究[J];福建師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年02期
4 袁和忠;沈吉;劉恩峰;孟祥華;王建軍;;模擬水體pH控制條件下太湖梅梁灣沉積物中磷的釋放特征[J];湖泊科學(xué);2009年05期
5 楊秀珍;秦樊鑫;吳迪;李存雄;;pH對(duì)紅楓湖表層沉積物吸附與釋放磷的影響[J];貴州農(nóng)業(yè)科學(xué);2013年03期
6 才永紅,姚士奎;湖泊中磷的來(lái)源及其防治措施[J];黑龍江環(huán)境通報(bào);1998年04期
7 朱廣偉,秦伯強(qiáng),高光;風(fēng)浪擾動(dòng)引起大型淺水湖泊內(nèi)源磷暴發(fā)性釋放的直接證據(jù)[J];科學(xué)通報(bào);2005年01期
8 劉凡,介曉磊,賀紀(jì)正,周代華,徐鳳琳,李學(xué)垣;不同pH條件下針鐵礦表面磷的配位形式及轉(zhuǎn)化特點(diǎn)[J];土壤學(xué)報(bào);1997年04期
9 黃滿湘,章申,晏維金;農(nóng)田暴雨徑流侵蝕泥沙對(duì)氮磷的富集機(jī)理[J];土壤學(xué)報(bào);2003年02期
10 謝晶晶;慶承松;陳天虎;郭燕;潘敏;;幾種鐵(氫)氧化物對(duì)溶液中磷的吸附作用對(duì)比研究[J];巖石礦物學(xué)雜志;2007年06期
相關(guān)碩士學(xué)位論文 前1條
1 袁探;外源硫酸鹽對(duì)武漢南湖沉積物磷遷移特性的作用[D];華中農(nóng)業(yè)大學(xué);2011年
,本文編號(hào):1698102
本文鏈接:http://sikaile.net/kejilunwen/huanjinggongchenglunwen/1698102.html