磁加載絮凝法處理微蝕銅廢液的試驗(yàn)研究
本文選題:磁加載絮凝 切入點(diǎn):含銅廢水 出處:《天津大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著現(xiàn)代工業(yè)化進(jìn)程的不斷加快,工業(yè)生產(chǎn)排放的重金屬廢水對(duì)環(huán)境的污染程度日趨嚴(yán)重。在重金屬廢水處理技術(shù)中,絮凝法一直占據(jù)舉足輕重的地位,它直接影響著后續(xù)的處理成本。因此,如何實(shí)現(xiàn)高效絮凝,提高后續(xù)污泥的固液分離效果,節(jié)約占地面積,一直都是水處理領(lǐng)域中極具應(yīng)用價(jià)值的研究方向。磁加載絮凝是近些年來國內(nèi)外工業(yè)廢水處理領(lǐng)域研究的熱點(diǎn)。它是在傳統(tǒng)絮凝基礎(chǔ)上,投入磁種作為絮凝反應(yīng)的核心,誘導(dǎo)微絮體的形成,促進(jìn)微絮體顆粒相互碰撞粘結(jié)、迅速長(zhǎng)大,最終形成密實(shí)的磁絮體。與傳統(tǒng)絮凝相比,它加快了絮體沉降速率,縮短了絮體沉降時(shí)間,從而大大提高了絮凝效果,被認(rèn)為是一種高效的固液分離處理工藝。本課題主要研究磁加載絮凝處理模擬微蝕銅廢液。研究?jī)?nèi)容包括三部分:第一部分進(jìn)行了磁加載絮凝和砂加載絮凝的對(duì)比實(shí)驗(yàn),比較二者在處理重金屬工業(yè)廢水方面的異同點(diǎn);第二部分通過正交實(shí)驗(yàn)確定磁加載絮凝法的最優(yōu)工藝條件;第三部分是在第二部分基礎(chǔ)上,從絮體污泥沉降性能、絮體粒徑、絮體污泥體積及絮體含水率等角度分別探究磁粉的投加量和粒徑等因素對(duì)絮凝效果的影響,以期探尋磁粉在磁加載絮凝中的作用規(guī)律和機(jī)理,為此法處理重金屬工業(yè)廢水的應(yīng)用提供理論和技術(shù)支持。研究結(jié)果表明:(1)磁加載絮凝最佳實(shí)驗(yàn)條件:PAC投藥量1.8 g/L,PAM投藥量0.015 g/L,pH 9.5,磁粉投加量2.0 g/L,磁粉粒徑300~400目,靜沉?xí)r間8min,此時(shí)Cu2+和濁度去除率達(dá)98.53%和94.72%。(2)砂加載絮凝最佳實(shí)驗(yàn)條件:PAC投藥量1.8 g/L,PAM投藥量0.015 g/L,pH 9.5,微砂投加量2.0 g/L,靜沉?xí)r間8 min,此時(shí)Cu2+和濁度去除率達(dá)97.45%和93.24%。(3)正交實(shí)驗(yàn)得出影響Cu2+去除率的因素的主次關(guān)系:pH值磁粉投加量磁粉粒徑PAM投藥量PAC投藥量。將磁粉作為磁種有助于提高工業(yè)廢水中重金屬的去除效果,其效應(yīng)高于單純提高PAC或PAM投加。(4)磁加載絮凝的絮體沉降速率明顯比傳統(tǒng)絮凝快。磁絮體沉降速率最快可達(dá)5 cm/min,是傳統(tǒng)絮體沉降速率的3.64倍。(5)當(dāng)磁粉投加量和粒徑分別取2.0 g/L和300~400目時(shí),絮體生長(zhǎng)速率最快,粒徑D50達(dá)41.94μm,較傳統(tǒng)絮體粒徑大20μm。磁粉投加量過多或過少、粒徑過大或過小都會(huì)相應(yīng)減慢磁絮體生長(zhǎng)速率。(6)磁粉的加入使絮體變得密實(shí),污泥體積大大減少,減輕了后期污泥的處理壓力,提高了廢水處理的效率。(7)磁粉的加入擠壓出了絮體空隙中的自由水,使絮體含水率降低。
[Abstract]:With the rapid development of modern industrialization, heavy metal wastewater discharged from industrial production is becoming more and more polluted to the environment. Flocculation plays an important role in the treatment of heavy metal wastewater. It directly affects the cost of subsequent treatment. Therefore, how to achieve high efficiency flocculation, improve the solid-liquid separation effect of follow-up sludge, and save the area, Magnetic loading flocculation is a hot spot in the field of industrial wastewater treatment at home and abroad in recent years. It is the core of flocculation reaction based on traditional flocculation. It induces the formation of micro-floc, promotes the micro-flocs to collide with each other and bond each other, grows rapidly, and finally forms dense magnetic floc. Compared with traditional flocculation, it accelerates the settling rate of flocs and shortens the settling time of flocs. Thus greatly improving the flocculation effect, It is considered to be an efficient solid-liquid separation process. This paper mainly studies magnetic loading flocculation treatment of simulated micro-corrosion copper waste liquid. The research contents include three parts: the first part is the comparative experiment of magnetic loading flocculation and sand loading flocculation. In the second part, the optimum process conditions of magnetic loading flocculation method are determined by orthogonal experiment, the third part is based on the second part, from the flocculation sludge settling performance, the floc particle size, In order to find out the action law and mechanism of magnetic powder in magnetic loading flocculation, the effects of magnetic powder dosage and particle size on flocculation effect were studied from the angles of sludge volume and water content of floc respectively. The results show that the best experimental conditions for flocculation by magnetic loading are: PAC dosage 1.8 g / L PAM 0.015 g / L pH 9.5, magnetic powder dosage 2.0 g / L, magnetic particle size 300 ~ 400 mesh, magnetic powder dosage 2.0 g / L, magnetic particle size 300 g 路L ~ (-1), pH 9.5, magnetic powder dosage 2.0 g / L, magnetic particle size 300 ~ 400 mesh, pH 9.5, magnetic powder dosage 2.0 g 路L ~ (-1), magnetic particle size 300 g / L ~ (400) mesh. Cu2 and turbidity removal rates of 98.53% and 94.72) the best experimental conditions for flocculation by loading sand with Cu2 and turbidity reach 98.53% and 94.72.The optimum experimental conditions for flocculation are as follows: 1.8g / L Pam dosage 0.015 g / L pH 9.5, 2.0 g / L micro-sand dosage, 8 mins settling time, 97.45% and 93.24.3) orthogonal real conditions for Cu2 and turbidity removal. The primary and secondary relationships of the factors affecting the removal rate of Cu2 were obtained. The dosage of magnetic powder particle size, PAM, dosage of Cu2, dosage of magnetic powder, and the dosage of PAC, were obtained. Using magnetic powder as magnetic seed can improve the removal effect of heavy metals in industrial wastewater. The effect of magnetic flocculation is higher than that of PAC or PAM. 4) the flocculation rate of magnetic loading flocculation is obviously faster than that of traditional flocculation. The fastest settling rate of magnetic flocs can reach 5 cm / min, which is 3.64 times that of traditional flocs.) when the amount of magnetic powder and particles are added, the sedimentation rate of magnetic flocs can reach 5 cm / min, which is 3.64 times of that of traditional flocs. When the diameters are 2.0 g / L and 300 g / L, respectively, The growth rate of the floc is the fastest, the particle size D50 is 41.94 渭 m, which is 20 渭 m larger than that of the traditional floc. The addition of the magnetic powder can decrease the growth rate of the magnetic floc by adding too much or too little magnetic powder, so that the flocs become compacted and the sludge volume is greatly reduced. The pressure of sludge treatment in the later stage was reduced, and the efficiency of wastewater treatment was improved. The addition of magnetic powder extruded the free water in the pore of the floc, which reduced the water content of the floc.
【學(xué)位授予單位】:天津大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:X703
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張小燕,黨酉勝,盧榮;螯合絮凝法處理含鋅污水[J];西安石油學(xué)院學(xué)報(bào)(自然科學(xué)版);2002年03期
2 王萍;絮凝法處理乳制品加工廢水的應(yīng)用研究[J];青島大學(xué)學(xué)報(bào)(工程技術(shù)版);2004年03期
3 李祝;胡立新;程亮;萬端極;;正交試驗(yàn)優(yōu)選絮凝法處理甘草酸廢水的研究[J];中草藥;2007年05期
4 史兵方;;電絮凝法治理實(shí)驗(yàn)室廢水的研究[J];水資源與水工程學(xué)報(bào);2008年06期
5 單國華;;絮凝法處理印染廢水研究進(jìn)展及趨勢(shì)[J];紡織科技進(jìn)展;2009年02期
6 王作順;應(yīng)用磁絮凝法處理軋鋼污水的試驗(yàn)[J];冶金動(dòng)力;1994年05期
7 曹可可;生物-電解-絮凝法處理客運(yùn)洗滌污水[J];鐵道勞動(dòng)安全衛(wèi)生與環(huán)保;2003年05期
8 項(xiàng)玉芝;中和-絮凝法處理油田酸化返出液中污水[J];石油化工高等學(xué)校學(xué)報(bào);2004年03期
9 丁健;劉光利;張媛;;電絮凝法處理丁腈橡膠廢水[J];石化技術(shù)與應(yīng)用;2011年03期
10 張引沁;;電絮凝法處理印染廢水研究[J];新鄉(xiāng)學(xué)院學(xué)報(bào)(自然科學(xué)版);2011年05期
相關(guān)會(huì)議論文 前4條
1 賀啟環(huán);;高壓脈沖電絮凝法的工作原理與功效[A];二氧化氯研究與應(yīng)用--2010二氧化氯與水處理技術(shù)研討會(huì)論文集[C];2010年
2 李金鳳;秦淑紅;張宗華;;電絮凝法降除飲水中氟的技術(shù)及設(shè)備的研究[A];科技創(chuàng)新與經(jīng)濟(jì)結(jié)構(gòu)調(diào)整——第七屆內(nèi)蒙古自治區(qū)自然科學(xué)學(xué)術(shù)年會(huì)優(yōu)秀論文集[C];2012年
3 蘇振華;馮文英;王承亮;曹瀛戈;張羽;張鳳山;馮好偉;;絮凝法處理水基油墨廢水的研究[A];中國造紙學(xué)會(huì)第十六屆學(xué)術(shù)年會(huì)論文集[C];2014年
4 何金輝;姚婧婧;李彥鵬;;環(huán)境友好型表面活性劑氣浮處理潤(rùn)滑油廢水的研究[A];2013中國環(huán)境科學(xué)學(xué)會(huì)學(xué)術(shù)年會(huì)論文集(第五卷)[C];2013年
相關(guān)碩士學(xué)位論文 前9條
1 武捷;電絮凝法處理乳化油廢水的試驗(yàn)研究[D];江蘇大學(xué);2016年
2 羅曼;磁加載絮凝法處理微蝕銅廢液的試驗(yàn)研究[D];天津大學(xué);2015年
3 吳劍坤;電絮凝法深度脫氮除磷的研究[D];昆明理工大學(xué);2009年
4 李杰;電絮凝法處理毛毯印染廢水的研究[D];合肥工業(yè)大學(xué);2008年
5 楊敏;磷酸鹽絡(luò)合—絮凝法處理放射性稀土廢水的研究[D];南昌大學(xué);2012年
6 汪洋;還原絮凝法處理廢水中Cr~(6+)的研究[D];吉林大學(xué);2011年
7 黃燕;電絮凝法去除廢水中Cu(Ⅱ)、Cr(Ⅵ)的試驗(yàn)研究[D];浙江工業(yè)大學(xué);2012年
8 周華東;鐵還原—絮凝法處理氟化工甲基氯化物廢水中試研究[D];浙江大學(xué);2006年
9 陶賀;脈沖電絮凝法和化學(xué)混凝法處理線切割乳化液廢水的研究[D];合肥工業(yè)大學(xué);2007年
,本文編號(hào):1596171
本文鏈接:http://sikaile.net/kejilunwen/huanjinggongchenglunwen/1596171.html