氣霧化輔助激光探針?biāo)w重金屬元素成分分析研究
本文選題:激光探針 切入點(diǎn):氣霧化輔助 出處:《華中科技大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著工業(yè)經(jīng)濟(jì)的發(fā)展,水體重金屬污染已經(jīng)嚴(yán)重威脅到生態(tài)環(huán)境和人體健康。由于傳統(tǒng)的水體重金屬元素成分分析方法存在耗時(shí)長(zhǎng),裝置復(fù)雜等缺陷,而無(wú)法對(duì)水體重金屬污染進(jìn)行實(shí)時(shí)在線分析。為彌補(bǔ)傳統(tǒng)分析方法的不足,本文利用氣霧化輔助激光探針技術(shù),既利用激光探針技術(shù)的快速、實(shí)時(shí)、無(wú)需樣品制備等優(yōu)點(diǎn),又有效克服了激光探針檢測(cè)液態(tài)樣品時(shí)的飛濺和液面波動(dòng)等問(wèn)題,實(shí)現(xiàn)了水體重金屬元素的快速實(shí)時(shí)檢測(cè)的目的。本文采用自主設(shè)計(jì)并搭建的氣霧化輔助激光探針實(shí)驗(yàn)平臺(tái),并對(duì)主要實(shí)驗(yàn)參數(shù),如離焦量、橫向距離、激光能量、采集延時(shí)等進(jìn)行了優(yōu)化,在此基礎(chǔ)上對(duì)鐵礦采選工業(yè)污水的模擬樣品中重金屬元素進(jìn)行了檢測(cè)。結(jié)果表明,當(dāng)離焦量為-0.25 mm、橫向距離為2 mm、激光能量為100 mJ、采集延時(shí)為0.5μs的條件下,可獲得比較理想的結(jié)果。進(jìn)一步的分析可得鐵(Fe)、銅(Cu)、鋅(Zn)、錳(Mn)、鉻(Cr)、鉛(Pb)檢測(cè)極限分別為37.6、2.5、104.9、7、3.2和15.9 ppm,各元素定標(biāo)曲線的線性擬合系數(shù)分別為0.989、0.9974、0.9475、0.9974、0.9969、0.9977。對(duì)比我國(guó)污水檢測(cè)標(biāo)準(zhǔn),其中銅(Cu)、錳(Mn)、鉻(Cr)三種元素的檢測(cè)極限接近鐵礦采選工業(yè)污水的排放標(biāo)準(zhǔn)。最后,引入共振激發(fā)技術(shù),與氣霧化共振輔助激光探針技術(shù)相結(jié)合,對(duì)鐵礦采選工業(yè)模擬污水中的重金屬元素進(jìn)行選擇性增強(qiáng)。獲得了鐵(Fe)、錳(Mn)、鉛(Pb)三種元素檢測(cè)極限分別為0.2、1.1、0.4 ppm,線性擬合系數(shù)分別為0.998、0.9999、0.9999,達(dá)到鐵礦采選工業(yè)污水排放標(biāo)準(zhǔn)。上述結(jié)果表明,本文所設(shè)計(jì)和研發(fā)發(fā)的氣霧化輔助激光探針技術(shù)能對(duì)水體重金屬污染進(jìn)行有效的檢測(cè),為激光探針技術(shù)在水體重金屬在線檢測(cè)及應(yīng)用提供了一條新途徑。
[Abstract]:With the development of industrial economy, heavy metal pollution in water body has seriously threatened the ecological environment and human health. In order to make up for the deficiency of the traditional analysis methods, the gas atomization assisted laser probe technology is used in this paper, which makes use of the advantages of the laser probe technology, such as fast, real time, no sample preparation and so on. It also overcomes the problems of splash and liquid level fluctuation in the detection of liquid samples by laser probe, and realizes the purpose of rapid and real-time detection of metal elements of water weight. In this paper, an experimental platform of air-atomized laser probe is designed and built. The main experimental parameters, such as defocus, transverse distance, laser energy, acquisition delay and so on, are optimized. The heavy metal elements in the simulated samples of industrial sewage from iron ore mining are tested. When the defocus is -0.25 mm, the transverse distance is 2 mm, the laser energy is 100mJ, the acquisition delay is 0.5 渭 s, By further analysis, the detection limits of Fe (Fe), Cu (Cu), Zn (Zn), mn (mn), Cr (C) and Pb (Pb) were 37.6U 2.5N 104.9U 73.2 and 15.9 ppm, respectively. The linear fitting coefficients of calibration curves for each element were 0.9890.99740.9475U 0.99740.9974U 0.996990.99777.Compared with the standards of sewage detection in China, and the linear fitting coefficients of the calibration curves for each element were 0.9890.99740.9475U 0.9974U 0.9969109690.99777.Compared with the standards of sewage detection in China. The detection limit of the three elements, Cu (Cu), mn (mn), Cr (Cr), is close to the discharge standard of industrial sewage from iron ore mining and dressing. Finally, the resonance excitation technique is introduced and combined with the gas atomization assisted laser probe technology. The selectivity of heavy metal elements in simulated wastewater from iron ore mining and dressing industry was enhanced. The detection limits of Fe (Fe), mn (mn) and Pb (Pb) were found to be 0. 2 ~ 1. 1 ~ 0. 4 ppm, respectively. The linear fitting coefficient was 0. 998 ~ 0. 9999 ~ 9 ~ 0. 9999, respectively, which reached the discharge of wastewater from iron ore mining and dressing industry. Criteria. The above results show that, The gas atomization assisted laser probe technique designed and developed in this paper can effectively detect the heavy metal pollution in water body, which provides a new way for the on-line detection and application of laser probe technology to heavy metals in water body.
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:X832
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳揚(yáng)光;;激光探針的研究與應(yīng)用[J];無(wú)機(jī)材料學(xué)報(bào);1981年02期
2 范競(jìng)藩 ,徐堅(jiān) ,談志人;激光探針過(guò)濾式質(zhì)譜測(cè)金屬微區(qū)氫裝置的研究[J];浙江工學(xué)院學(xué)報(bào);1985年03期
3 李維華;激光探針-質(zhì)譜計(jì)聯(lián)用測(cè)定穩(wěn)定同位素[J];分析測(cè)試儀器通訊;1996年02期
4 劉馳,穆治國(guó),黃寶玲;激光探針-質(zhì)譜聯(lián)用技術(shù)在同位素地球化學(xué)中的研究進(jìn)展[J];質(zhì)譜學(xué)報(bào);1994年03期
5 梁細(xì)榮,李獻(xiàn)華,劉永康,劉穎,王甘霖;激光探針等離子體質(zhì)譜同時(shí)測(cè)定鋯石微區(qū)鈾-鉛年齡及微量元素[J];巖礦測(cè)試;1999年04期
6 梁細(xì)榮,李獻(xiàn)華,劉穎,李寄]N;激光探針電感耦合等離子體質(zhì)譜分析全巖堿融玻璃的微量元素[J];分析化學(xué);1998年10期
7 張展適;華仁民;鄧平;吳烈勤;姚軍民;顧晟艷;;337鈾礦床帽峰巖體鋯石激光探針U-Pb法年齡及其地質(zhì)意義[J];鈾礦地質(zhì);2007年05期
8 蒲志平,許景榮,邱華寧,張永良,胡世玲;激光探針質(zhì)譜及單顆粒礦物~(40)Ar/~(39)Ar法年齡的測(cè)定[J];巖礦測(cè)試;1997年01期
9 徐興旺,蔡新平,劉玉林,張寶林;冀西北后溝金礦床交代成因鉀長(zhǎng)石激光探針 ~(40)Ar-~(39)Ar年齡[J];中國(guó)科學(xué)(D輯:地球科學(xué));2001年06期
10 ;[J];;年期
相關(guān)會(huì)議論文 前3條
1 王真;楊建倫;徐榮昆;;激光探針診斷系統(tǒng)收光孔徑角對(duì)測(cè)量密度能力的影響[A];中國(guó)核科學(xué)技術(shù)進(jìn)展報(bào)告——中國(guó)核學(xué)會(huì)2009年學(xué)術(shù)年會(huì)論文集(第一卷·第7冊(cè))[C];2009年
2 王琛;王偉;孫今人;方智恒;吳江;傅思祖;顧援;王世績(jī);;適合于應(yīng)用實(shí)驗(yàn)的X射線激光探針[A];中國(guó)工程物理研究院科技年報(bào)(2003)[C];2003年
3 李惠民;孫敏;夏小平;吳昌華;趙國(guó)春;;華北克拉通中部孔茲巖的鋯石激光探針電感耦合等離子體質(zhì)譜(LA-ICPMS)法U-Pb年齡測(cè)定[A];同位素地質(zhì)新進(jìn)展:技術(shù)、方法、理論與應(yīng)用學(xué)術(shù)研討會(huì)論文(摘要)集[C];2003年
相關(guān)碩士學(xué)位論文 前5條
1 劉昆;激光探針掃描系統(tǒng)結(jié)構(gòu)設(shè)計(jì)[D];長(zhǎng)春理工大學(xué);2015年
2 郝榮飛;陶瓷材料及其生產(chǎn)原料激光探針成分分析[D];華中科技大學(xué);2014年
3 鄭重;基于遠(yuǎn)場(chǎng)光學(xué)的高分辨率激光探針儀研究[D];華中科技大學(xué);2014年
4 于洋;基于激光探針的塑料識(shí)別新技術(shù)研究[D];華中科技大學(xué);2014年
5 朱光正;氣霧化輔助激光探針?biāo)w重金屬元素成分分析研究[D];華中科技大學(xué);2015年
,本文編號(hào):1592996
本文鏈接:http://sikaile.net/kejilunwen/huanjinggongchenglunwen/1592996.html