基于MODIS影像空氣質(zhì)量評價及中國區(qū)域云量分析研究
本文關(guān)鍵詞: MODIS圖像 AOT PM2.5 云量 云檢測 出處:《安徽師范大學》2015年碩士論文 論文類型:學位論文
【摘要】:對地觀測衛(wèi)星可以對地球進行長時間大范圍的監(jiān)測,為人們提供大量重要的觀測資料。利用衛(wèi)星數(shù)據(jù)研究云主要從兩個方面考慮,一方面,云是遙感應用領(lǐng)域中一個主要干擾因素,影響對地表的監(jiān)測;另一方面,云在地氣系統(tǒng)中起到重要的調(diào)節(jié)作用,為精確預測氣候變化,構(gòu)建數(shù)值預測模型時需要大量的云參數(shù)資料。本論文的研究內(nèi)容有:首先,利用去除云像元的MODIS L1B影像反演北京市上空的氣溶膠光學厚度,并與地面監(jiān)測PM2.5質(zhì)量濃度數(shù)據(jù)進行回歸擬合出四個經(jīng)驗預測模型,從而完成對城市空氣質(zhì)量評價模型的構(gòu)建這一遙感應用;其次,通過MODIS云檢測產(chǎn)品反演高分辨率的云量資料,并與地面觀測云量進行對比分析,從而一方面為氣候變化研究提供高分辨率的云量資料,另一方面對云檢測產(chǎn)品精度進行分析評價,為改進云檢測算法模型提供方向;最后對MODIS云檢測方法進行探究。本論文結(jié)論主要有以下幾點:1.構(gòu)建的PM2.5質(zhì)量濃度的四個經(jīng)驗模型的精度分別為R2=0.818,R2=0.750,R2=0.699和R2=0.629。其中,二次模型效果最好,能夠提供快速而較經(jīng)濟的PM2.5空間分布信息。2.利用四個模型和2012年10月11日的MODIS影像反演了PM2.5質(zhì)量濃度,并與地面監(jiān)測的PM2.5進行對比,有50%,46.4%,46.4%和39.3%的站點分別在四個預測模型的誤差范圍內(nèi)。3.利用MODIS云檢測產(chǎn)品反演了中國區(qū)域近十年的上午星和下午星的高分辨率云量,統(tǒng)計分析其時間序列發(fā)現(xiàn):總云量變化趨勢為略有下降,并且下午星云量比上午星要多,與地面觀測的日均云量的相關(guān)性較好,例如2012年的相關(guān)系數(shù)為0.878。4.對比衛(wèi)星反演和地面觀測的月平均云量發(fā)現(xiàn):在寒季兩者相差較大,可能是植被覆蓋較少或冰雪覆蓋導致地表反射率較大,被誤判為云。5.經(jīng)過在6個不同下墊面區(qū)域的統(tǒng)計分析實驗表明:去除寒季數(shù)據(jù)后,中國北方的幾個研究區(qū)域的兩種云量的相關(guān)性增加明顯,特別是東北森林區(qū)域,而在南方研究區(qū)域沒有明顯變化,可能是積雪造成云的誤判。6.通過云檢測測試,發(fā)現(xiàn)利用亮溫差9.37.3BTBT?檢測能夠有效抑制將荒漠或植被稀疏的亮地表區(qū)域誤判為云。
[Abstract]:Earth observation satellites can monitor the Earth for a long time and on a large scale, providing people with a large amount of important observation data. The use of satellite data to study clouds is mainly considered from two aspects: on the one hand, Clouds are a major interference factor in remote sensing applications, affecting the monitoring of the surface. On the other hand, clouds play an important role in regulating the earth and atmosphere systems to accurately predict climate change. A large amount of cloud parameter data are needed to construct a numerical prediction model. Firstly, the aerosol optical thickness over Beijing is retrieved by using MODIS L1B image with cloud pixel removal. Four empirical prediction models were fitted by regression with ground monitoring PM2.5 mass concentration data, thus the remote sensing application of urban air quality evaluation model was completed. Secondly, high resolution cloud data were retrieved through MODIS cloud detection products. And compared with the cloud amount observed on the ground, on the one hand to provide high-resolution cloud data for the study of climate change, on the other hand, to analyze and evaluate the accuracy of cloud detection products, so as to provide a direction for improving the cloud detection algorithm model. Finally, the MODIS cloud detection method is explored. The main conclusions of this paper are as follows: 1. The accuracy of four empirical models of PM2.5 mass concentration are R2O0.818R2O0.750R2O0.699 and R2O0.629. among them, the quadratic model has the best effect. It can provide fast and economical spatial distribution information of PM2.5. Using four models and MODIS image of October 11th 2012, the mass concentration of PM2.5 is retrieved and compared with PM2.5 monitored on the ground. 46.4% and 39.3% of the stations are within the error range of four prediction models, respectively. Using the MODIS cloud detection products, the high resolution cloud amounts of the morning and afternoon stars in the last ten years in the Chinese region have been inversed. The statistical analysis of the time series shows that the change trend of the total cloud amount is a slight decrease, and the number of nebula in the afternoon is more than that of the morning star, and the correlation with the daily average cloud amount observed on the ground is better. For example, in 2012, the correlation coefficient was 0.878. 4. By comparing the monthly average cloud cover of satellite inversion and ground observation, it was found that in cold season, the difference between the two is large, which may be caused by less vegetation cover or greater surface reflectivity due to snow and ice cover. The results of statistical analysis in six different underlying areas show that after removing cold season data, the correlation between the two types of cloud cover in several study areas in northern China has increased significantly, especially in the northeast forest region. However, there is no obvious change in the southern study area, which may be caused by snow. 6. Through the cloud detection test, it is found that 9.37.3 BTT BTT can be used as a result of bright temperature difference. The detection can effectively restrain the misjudgment of the desert or vegetation sparse bright surface area into cloud.
【學位授予單位】:安徽師范大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:X823;P426.5
【相似文獻】
相關(guān)期刊論文 前10條
1 張美玲;殷紅;辛明月;陳龍;付煒;張麗敏;;基于MODIS影像的沈陽城市熱島效應及其與植被指數(shù)的關(guān)系研究[J];沈陽農(nóng)業(yè)大學學報;2011年05期
2 田玉剛;廖小露;張長興;;基于時間序列MODIS影像的暴雨后作物淹沒歷時提取方法[J];遙感技術(shù)與應用;2012年05期
3 侯慧姝;楊宏業(yè);王秀梅;;基于MODIS影像的內(nèi)蒙古草原積雪監(jiān)測[J];測繪科學;2010年04期
4 柴永強;邵峰晶;孫仁誠;王常穎;;基于決策樹的MODIS影像赤潮智能檢測技術(shù)[J];青島大學學報(自然科學版);2012年02期
5 田偉國;彭佳棟;沈軍;李賽;;基于MODIS影像序列的三峽截流前后洞庭湖面積變化序列分析(英文)[J];Agricultural Science & Technology;2012年06期
6 陳德智;秦其明;;利用MODIS影像數(shù)據(jù)獲取融雪信息[J];遙感技術(shù)與應用;2006年01期
7 蔣耿明,牛錚,阮偉利,劉正軍;MODIS影像條帶噪聲去除方法研究[J];遙感技術(shù)與應用;2003年06期
8 吳軍;張萬昌;;MODIS影像條帶噪聲去除的自相關(guān)插值法[J];遙感技術(shù)與應用;2006年03期
9 田偉國;彭嘉棟;沈軍;李賽;;基于MODIS影像序列的三峽截流前后洞庭湖面積變化序列分析[J];安徽農(nóng)業(yè)科學;2012年16期
10 遲麗寧;邵峰晶;王常穎;孫仁誠;;基于關(guān)聯(lián)規(guī)則的MODIS影像綠潮檢測[J];青島大學學報(自然科學版);2012年02期
相關(guān)會議論文 前4條
1 劉占宇;王立濤;程家安;;基于長時間序列MODIS影像的中南半島水稻種植時空分布研究[A];第十七屆中國遙感大會摘要集[C];2010年
2 邵軍榮;吳時強;吳修鋒;譚平;孫堅;;基于MODIS影像分析太湖生物量與氣溫關(guān)系[A];中國原水論壇專輯[C];2010年
3 林麗群;舒寧;肖俊;;MODIS影像自動變化檢測[A];第十五屆全國遙感技術(shù)學術(shù)交流會論文摘要集[C];2005年
4 郭鵬;鄒春輝;趙學斌;;MODIS影像水體監(jiān)測方法研究進展[A];第28屆中國氣象學會年會——S1第四屆氣象綜合探測技術(shù)研討會[C];2011年
相關(guān)碩士學位論文 前2條
1 汪超;基于MODIS影像空氣質(zhì)量評價及中國區(qū)域云量分析研究[D];安徽師范大學;2015年
2 張蕓;基于北京一號和MODIS影像的爛沙洋水域水深遙感研究[D];南京師范大學;2008年
,本文編號:1500591
本文鏈接:http://sikaile.net/kejilunwen/huanjinggongchenglunwen/1500591.html