畜禽養(yǎng)殖廢水中重金屬對厭氧微生物多樣性影響研究
本文關(guān)鍵詞:畜禽養(yǎng)殖廢水中重金屬對厭氧微生物多樣性影響研究 出處:《湖南農(nóng)業(yè)大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 畜禽養(yǎng)殖廢水 重金屬 厭氧生物處理 多樣性 Cu~(2+) Zn~(2+)
【摘要】:本論文通過對畜禽廢水中添加Cu~(2+)、Zn~(2+)下對其厭氧處理系統(tǒng)運(yùn)轉(zhuǎn)、細(xì)菌多樣性進(jìn)行分析,為處理含重金屬畜禽養(yǎng)殖廢水提供參考,通過試驗(yàn)得出:(1)在無添加重金屬時(shí),對厭氧系統(tǒng)處理畜禽養(yǎng)殖廢水條件選擇與優(yōu)化。最終得出最佳運(yùn)行條件為:進(jìn)水TOC為1000mg/L、pH為7.5(試驗(yàn)得出為7-8)。(2)在添加Cu~(2+)的條件下,隨著Cu~(2+)濃度由1.2605mg/L增加至4.7224mg/L,去除率從99.49%降低至42.20%;TOC去除率由85.48%降低至13.89%;產(chǎn)甲烷量從155.30mL降至67.78mL;試驗(yàn)3組(C_(Cu)=2.23mg/L)的抑制率達(dá)到49.77%,故2.23mg/L為半抑制濃度。(3)在添加Zn~(2+)的條件下,隨著Zn~(2+)濃度由3.0699mg/L增加至29.8278mg/L,Zn~(2+)的吸附量逐步增大但去除率有所降低;TOC去除率由81.29%降低至27.48%,產(chǎn)甲烷量從343.85mL降至83.67mL;試驗(yàn)4組(C_(Zn)=13.64mg/L)的抑制率達(dá)到49.59%,故13.64mg/L為半抑制濃度。(4)在添加Cu~(2+)-Zn~(2+)的條件下,隨著Cu~(2+)、Zn~(2+)的濃度增加,厭氧活性污泥中的Cu、Zn的含量也趨于飽和,最后趨于飽和不再隨Cu~(2+)、Zn~(2+)濃度升高而增加;TOC去除率由75.27%降低至18.76%;產(chǎn)甲烷量從228.91mL降至118.93mL;試驗(yàn)15組(C_(Cu)=1.24mg/L, C_(Zn)=17.14mg/L)、試驗(yàn)24組(C_(Cu)=1.63mg/L, C_(Zn)=13.65mg/L)、試驗(yàn)33組(C_(Cu)=1.67mg/L, C_(Zn)=8.65mg/L)、驗(yàn)43組(C_(Cu)=2.30mg/L, C_(Zn)=8.37mg/L)和試驗(yàn)51組(C_(Cu)=3.78mg/L, C_(Zn)=3.10mg/L)的抑制率達(dá)到50%左右,故其為半抑制濃度。(5)通過PCR-DGGE技術(shù)和高通量測序之后,厭氧微生物所屬的門、綱、目、科、屬發(fā)生了較大變化。隨著Cu~(2+)-Z n~(2+)濃度的增加,發(fā)現(xiàn)厭氧顆粒污泥中的細(xì)菌種群豐富度明顯降低,在DGGE中除試驗(yàn)11組(C_(Cu)=1.32mg/L, C_(Zn)=3.07mg/L)亮條紋有少許增多,其余試驗(yàn)組中亮條紋明顯減少;說明低濃度Cu~(2+)-Zn~(2+)對厭氧微生物產(chǎn)生了促進(jìn)作用作用,高濃度Cu~(2+) Zn~(2+)對厭氧微生物產(chǎn)生了抑制作用。通過對對照組、試驗(yàn)11組(C_(Cu)=1.32mg/L, C_(Zn)=3.07mg/L)、試驗(yàn)15組(C_(Cu)=1.24mg/L, C_(Zn)=17.14mg/L)、試驗(yàn)51組(C_(Cu)=3.78mg/L, C_(Zn)=3.10mg/L)和試驗(yàn)55組(C_(Cu)=3.77mg/L, C_(Zn)=17.34mg/L)的微生物門分布圖對比,低濃度Cu~(2+)-Zn~(2+)對部分微生物有促進(jìn)作用,如Fimicute,而部分微生物則會受到抑制作用,如Chloroflexi。通過對樣本ACE稀疏指數(shù)、樣本距離熱圖對比,PCA分析plot等分析,表明對照組與試驗(yàn)15組(C_(Cu)=1.24mg/L,C_(Zn)=17.14mg/L)相似程度較高,試驗(yàn)51組(C_(Cu)=3.78mg/L, C_(Zn)=3.10mg/L)與試驗(yàn)55組(Ccu=3.77mg/L, C_(Zn)=17.34mg/L)相似度較高。
[Abstract]:In this paper, the anaerobic treatment system and bacterial diversity of livestock and poultry wastewater were analyzed under the condition of adding Cu~(2 to the wastewater, which provided a reference for the treatment of livestock and poultry wastewater containing heavy metals. The optimum conditions of anaerobic system for livestock and poultry wastewater treatment were obtained by experiments. The optimal operating conditions were as follows: the influent TOC was 1000mg / L. The pH value was 7.5 (7-8%) under the condition of adding Cu~(2. With the increase of Cu~(2 concentration from 1.2605 mg / L to 4.7224 mg / L, the removal rate decreased from 99.49% to 42.20 mg / L; The removal rate of TOC was reduced from 85.48% to 13.89; Methane production decreased from 155.30 mL to 67.78 mL; The inhibition rate of 2.23mg / L) in experimental group 3 was 49.77, so 2.23 mg / L was semi-inhibitory concentration. 3) under the condition of adding Zn~(2). With the increase of Zn~(2 concentration from 3.0699mg / L to 29.8278mg / L, the adsorption capacity increased gradually but the removal rate decreased. The removal rate of TOC was reduced from 81.29% to 27.48 ml, and the methane production decreased from 343.85 mL to 83.67 mL. In experiment 4, the inhibition rate of CZP 13.64mg / L was 49.59%. Therefore, 13.64mg / L was semi-inhibitory concentration. 4) under the condition of adding Cu~(2 (-ZnO2), the concentration of Cu~(2 increased with the increase of the concentration of Cu~(2. The content of Cu ~ (2 +) Zn in anaerobic activated sludge also tended to be saturated, and finally, the content of Cu ~ (2 +) in anaerobic activated sludge was not increased with the increase of Cu~(2 ~ (2 +) concentration. The removal rate of TOC was decreased from 75.27% to 18.76; Methane production decreased from 228.91 mL to 118.93 mL; In experiment 15 groups, there were 1.24 mg / L, and in experiment 24 groups, there were 1.24 mg / L, 17.14 mg / L, respectively, and in 24 groups of experiment, there were 1.63 mg / L. C / C / C / L 13.65 mg / L, test 33 groups / s / L / L / L / L / L / L / L / L / L / L / L / L / L / L / C / L of 8.65 mg / L / L). A total of 43 groups (2.30mg / L) and 51 test groups (2.30mg / L, 8.37mg / L) and 51 groups were tested respectively (3.78mg / L). The inhibition rate of C ~ + ~ (10) mg 路L ~ (-1) was about 50%, so it was half inhibitory concentration. (5) after PCR-DGGE and high-throughput sequencing. The phylum, class, order, family, genus of anaerobic microbes have changed greatly with the increase of Cu~(2 concentration. It was found that the abundance of bacteria in anaerobic granular sludge was obviously decreased, and in DGGE, except for 11 groups, 1.32 mg / L. There was a little increase in the number of bright stripes in C\ +\ +\ {0\} 7 mg / L\%\%\%\%\%\%\%\%\%\%\%\%\. The results show that the low concentration of Cu~(2 _ (2) can promote the anaerobic microorganism. High concentration of Cu~(2) Zn~(2 inhibited anaerobic microorganism. In the control group, the control group was treated with 1. 32 mg / L. Che Zn-nu 3.07 mg / L, test 15 groups, Che / C, 1.24 mg / L / L, C / L / L / L, C / T / C / L (17.14 mg / L / L). Test 51 groups have 3.78 mg / L, and test 55 groups have 3.77 mg / L of C\ + +\%\%\\\ {\}. Compared with the microbial gate distribution of Che ZZN 17.34 mg / L), low concentration of Cu~(2 ~ (-ZnN ~ (2)) could promote some microbes, such as Fimicute. However, some microbes were inhibited, such as chloroflexi. the ACE sparsity index of samples and the comparison of sample distance heat map with plot analysis were carried out. The results showed that the similarity between the control group and the experimental 15 groups was higher than that in the control group (1.24 mg / L) and the control group (17.14 mg / L). Ccun 3.78 mg / L and Ccun 3.77 mg / L in trial 51 group and Ccun 3.77 mg / L in test 55 group. Che ZZN 17.34 mg / L) has a higher similarity.
【學(xué)位授予單位】:湖南農(nóng)業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:X713
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳峻峰;顏智勇;邵繼海;舒鵬;王杰;文樹龍;;金霉素對畜禽養(yǎng)殖廢水厭氧生物處理及細(xì)菌多樣性的影響[J];凈水技術(shù);2014年02期
2 陳琳;谷潔;高華;秦清軍;王小娟;陳智學(xué);;Cu對厭氧發(fā)酵中水解酶活性及沼氣產(chǎn)量的影響[J];農(nóng)業(yè)工程學(xué)報(bào);2012年09期
3 王興春;楊致榮;王敏;李瑋;李生才;;高通量測序技術(shù)及其應(yīng)用[J];中國生物工程雜志;2012年01期
4 于聘飛;王英;葛芹玉;;高通量DNA測序技術(shù)及其應(yīng)用進(jìn)展[J];南京曉莊學(xué)院學(xué)報(bào);2010年03期
5 陳皓;陳玲;黃愛群;王虹;;重金屬對2-氯酚厭氧降解的抑制動(dòng)力學(xué)研究[J];中國環(huán)境科學(xué);2010年03期
6 高艷嬌;趙樹立;劉元;;金屬離子對厭氧消化的影響[J];遼寧化工;2010年03期
7 方春玉;周健;楊曉芳;李濤;何旭峰;;AFB的活性污泥中發(fā)酵細(xì)菌的分離及其初步鑒定[J];環(huán)境工程學(xué)報(bào);2008年12期
8 滕曉坤;肖華勝;;基因芯片與高通量DNA測序技術(shù)前景分析[J];中國科學(xué)(C輯:生命科學(xué));2008年10期
9 段妮娜;董濱;何群彪;陳洪斌;;規(guī);B(yǎng)豬廢水處理模式現(xiàn)狀和發(fā)展趨勢[J];凈水技術(shù);2008年04期
10 吳高鋒;李文剛;高衛(wèi)科;魏娟;楊慧敏;王鑫;;PCR-DGGE的原理及在動(dòng)物腸道菌群分析中的應(yīng)用[J];中國畜牧獸醫(yī);2008年06期
,本文編號:1414349
本文鏈接:http://sikaile.net/kejilunwen/huanjinggongchenglunwen/1414349.html