微生物修復汞、鉛等重金屬污染的研究
本文關鍵詞:微生物修復汞、鉛等重金屬污染的研究 出處:《貴州大學》2015年碩士論文 論文類型:學位論文
【摘要】:隨著城市化和工業(yè)化的加速,土壤的重金屬污染問題日趨嚴重。土壤重金屬污染是主要的生態(tài)環(huán)境問題之一,直接影響到區(qū)域生態(tài)系統(tǒng)穩(wěn)定和食品安全,關系到經濟尤其是農業(yè)的可持續(xù)發(fā)展和人體健康,因而引起廣泛的社會關注。為尋求解決土壤重金屬污染的方法,本文從受重金屬污染的土壤中篩選具轉化重金屬能力的微生物,重點篩選可轉化Hg、Pb的微生物,并對部分優(yōu)勢菌的轉化機理進行初步研究。主要結果如下:1分離到耐汞(100mg/L)真菌68株,耐鉛(1000mg/L)真菌97株,耐汞(100mg/L)細菌170株,耐鉛(400mg/L)細菌66株。2增加培養(yǎng)基中重金屬的含量,復篩得到耐鉛(3500mg/L)真菌23株,耐汞(350mg/L)真菌3株;耐鉛(800mg/L)細菌3株,耐汞(900mg/L)細菌5株。3將篩選到的高耐性菌株全部進行發(fā)酵試驗,另外,還選取了部分抗耐性較差的菌株參與試驗。檢測結果顯示真菌⑥ZW15-12、ZW2-5、ZN14-12對鉛的轉化率分別達到99.36%±0.12%、99.47%±0.3%和99.17%±0.1%;真菌③ZN17-1對汞的轉化率達到82.4%±0.40%,真菌③ZT13-4高達92.00%±0.20%。細菌D7-25對鉛的轉化率達到82.4%±0.2%,細菌④T13-21對鉛的轉化率高達91.30%±0.3%;細菌W6-10對汞的轉化率高達83.3%±0.7%。另外,結果還表明了耐受性高的菌株對重金屬轉化效果均優(yōu)于耐受性差的菌株。4篩選出具有高耐受性、高吸附性能的菌株。篩選出具有高耐受性、高吸附性能的菌株。通過形態(tài)學、生理生化實驗并結合其基因序列構建的系統(tǒng)發(fā)育樹分析,確定優(yōu)勢菌分別為ZW2-5和⑥ZW15-12:草酸青霉(Penicillium Oxalicum),ZN14-12:微紫青霉菌(Penicillium janthinellum),③ZN17-1:小翅孢殼(Emericellopsis minima),③ZT13-4:鐮刀菌(Fusarium striatum),④T13-21和D7-25:節(jié)桿菌(Arthrobacter niigatensis),W6-10為蠟狀芽孢桿菌(Bacillus cereus)。5在鉛離子濃度100mg/L或汞20mg/L的情況下,ZW2-5、ZN14-12、③ZT13-4、③ZN17-1菌株胞外聚合物中蛋白質、糖及胞內谷胱甘肽的含量均比在不含鉛和汞情況下高。結果表明優(yōu)勢菌對鉛和汞的吸附過程中,既表面吸附,也存在胞內物質的解毒與吸收。6 ZW2-5對鉛(100mg/L)的轉化率最佳條件為:pH值6和7,接種3ml或4ml,培養(yǎng)9天。③ZT13-4對汞(20mg/L)轉化率最佳條件為:pH為7,接種量為4ml,培養(yǎng)9天。④T13-21對鉛(50mg/L)的轉化最佳條件為:pH為6和7,接種量為3-5ml均可,培養(yǎng)時間為8-9天。W6-10對汞(50mg/L)的轉化最佳條件為:pH為6和7,接種量為1-5ml均可,培養(yǎng)時間為8-10天。
[Abstract]:With the acceleration of urbanization and industrialization, heavy metal pollution in soil is becoming more and more serious. Heavy metal pollution in soil is one of the main ecological environmental problems, which directly affects regional ecosystem stability and food safety. It is related to the sustainable development of economy, especially agriculture and human health, so it has caused widespread social concern. In order to find a solution to soil heavy metal pollution. In this paper, microorganisms with the ability to convert heavy metals were screened from soils contaminated by heavy metals. The transformation mechanism of some dominant bacteria was studied. The main results were as follows: 1. 68 strains of mercury-tolerant 100 mg / L) fungi and 97 strains of lead tolerance 1000 mg / L) fungi were isolated. Mercury tolerance 100 mg / L (170 strains) and lead tolerance (400 mg / L) 66 strains (.2) increased the content of heavy metals in the medium. 23 strains of lead tolerant fungi (3500mg / L) and 3 strains of mercury-tolerant fungi (350 mg / L) were obtained. Three strains of lead tolerance (800mg / L) and five strains of mercury-tolerant bacteria (900mg / L) were screened for fermentation. Some strains with poor tolerance were selected to take part in the experiment. The results showed that the fungus 6ZW15-12 was ZW2-5. The conversion rate of ZN14-12 to lead reached 99.36% 鹵0.12% 鹵0.3% and 99.17% 鹵0.1, respectively. The mercury conversion rate of fungi 3ZN17-1 was 82.4% 鹵0.40%. Fungi 3ZT13-4 reached 92.00% 鹵0.20.The transformation rate of bacteria D7-25 to lead reached 82.4% 鹵0.2%. The lead conversion rate of bacteria 4T13-21 was 91.30% 鹵0.3. The conversion rate of bacteria W6-10 to mercury was as high as 83.3% 鹵0.7. The results also showed that the transformation effect of high tolerance strain was better than that of poor tolerance strain .4. The strains with high tolerance and high adsorption ability were screened out with high tolerance. By morphological, physiological and biochemical experiments and combining with the phylogenetic tree analysis of its gene sequence. The dominant bacteria were ZW2-5 and 6ZW15-12: Penicillium Oxalicum. ZN14-12: Penicillium janthinellum. 3ZN17-1: Emericellopsis minima 3ZT13-4: Fusarium striatum. 4T13-21 and D7-25: Arthrobacter niigatensis. W6-10 is Bacillus cereus).5 with lead ion concentration of 100 mg / L or mercury of 20 mg / L with ZW2-5. Proteins in extracellular polymers of strain ZN14-12O3ZT13-4 and 3ZN17-1. The contents of sugar and intracellular glutathione were higher than those without lead and mercury. The results showed that the adsorption process of lead and mercury by dominant bacteria was both on the surface. The optimum conditions of detoxification and absorption of 6. 6 ZW2-5 of intracellular substance for 100 mg 路L ~ (-1) Pb ~ (2 +) were as follows: ph 6 and 7, inoculation 3 ml or 4 ml. The optimum conditions for 20 mg 路L ~ (-1) conversion of Hg ~ (2 +) were: ph = 7 and inoculation quantity (4ml). The optimum conditions for transformation of 50 mg 路L ~ (-1) Pb ~ (2 +) were as follows: ph: 6 and pH = 7, inoculation amount: 3-5ml. The optimum conditions for transformation of 50 mg 路L ~ (-1) Hg ~ (2 +) with culture time of 8-9 days. W6-10 were as follows: (1) pH 6 and 7, inoculation amount 1-5 ml, culture time 8-10 days.
【學位授予單位】:貴州大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:X172;X53
【參考文獻】
相關期刊論文 前10條
1 池銀花;;土壤重金屬污染及其生物修復技術的應用[J];福建農業(yè)科技;2006年03期
2 葉寒青,楊祥良,周井炎,徐輝碧;環(huán)境污染物鎘毒性作用機理研究進展[J];廣東微量元素科學;2001年03期
3 王誠曦;王濟;蔡雄飛;余躍;;農田土壤環(huán)境質量標準值制定與健康風險評估[J];廣西農業(yè)科學;2009年09期
4 丁振華,王文華,瞿麗雅,湯慶合,劉彩娥,程金平,胡衛(wèi)萱;貴州萬山汞礦區(qū)汞的環(huán)境污染及對生態(tài)系統(tǒng)的影響[J];環(huán)境科學;2004年02期
5 夏星輝,陳靜生;土壤重金屬污染治理方法研究進展[J];環(huán)境科學;1997年03期
6 周禮愷,張志明,曹承綿,李榮華;土壤的重金屬污染與土壤酶活性[J];環(huán)境科學學報;1985年02期
7 段學軍,閔航;Cd脅迫下稻田土壤生物活性與酶活性綜合研究[J];農業(yè)環(huán)境科學學報;2004年03期
8 曹裕松,李志安,鄒碧;根際環(huán)境的調節(jié)與重金屬污染土壤的修復[J];生態(tài)環(huán)境;2003年04期
9 王燕嶺;淺談近紅外光譜分析技術[J];現(xiàn)代科學儀器;2005年04期
10 黃占斌;焦海華;;土壤重金屬污染及其修復技術[J];自然雜志;2012年06期
,本文編號:1391745
本文鏈接:http://sikaile.net/kejilunwen/huanjinggongchenglunwen/1391745.html