石家莊霾污染過程大氣顆粒物化學(xué)組分分析及來源解析
本文關(guān)鍵詞:石家莊霾污染過程大氣顆粒物化學(xué)組分分析及來源解析 出處:《北京化工大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 霾污染 大氣顆粒物 化學(xué)組分 來源解析
【摘要】:京津冀、長三角、珠三角、關(guān)中平原和成渝盆地,為我國大氣顆粒物造成霾污染最為嚴重的典型區(qū)域,同時也是氣態(tài)污染物高排放地區(qū)。石家莊霾污染監(jiān)測研究及源解析,是京津冀區(qū)域大氣污染聯(lián)防聯(lián)控的重要組成部分,但對石家莊大氣顆粒物水溶性離子等化學(xué)成分分粒徑段的分析研究鮮有報道,結(jié)合詳細化學(xué)組成對該區(qū)域的大氣顆粒物來源解析工作也剛剛開始。為認知石家莊典型霾污染過程中顆粒物化學(xué)組成特征和濃度水平,并進一步進行大氣顆粒物源解析工作,于2013年6-8月、10-11月、2014年1月和4-5月,利用慣性撞擊式9級采樣器(Andersen).美國熱電公司環(huán)境儀器和石英微量振蕩天平(TEOM)對石家莊城區(qū)夏、秋、冬和春四個季節(jié)霾污染期間大氣顆粒物進行了實時連續(xù)監(jiān)測和分粒徑段的采樣分析。使用離子色譜儀、熱光碳分析儀和電感耦合等離子體質(zhì)譜儀(ICP-MS)對氣溶膠中8種水溶性無機離子(Na+、NH4+、K+、Mg2+、Ca2+、Cl-、NO3-、 SO42-)、EC/OC以及24種金屬元素進行了分析。并使用EPA PMF5.0模型對霾污染期間大氣細顆粒物進行了來源解析,提出了石家莊大氣污染優(yōu)先控制的排放源。研究結(jié)果如下:石家莊采樣期間顆粒物濃度有明顯的季節(jié)變化特征。霾污染時期PM2.5平均濃度冬季最高,秋季次之,夏季最低。夏、秋、冬、春四個季節(jié)PM2.5平均濃度分別為:73.9±33.0、272.8±142.4、170.5±75.7、75.4±42.0μg/m3;NO2和SO2平均濃度的季節(jié)變化與顆粒物的季節(jié)變化致。SO:夏、秋、冬、春平均濃度分別:38.3±16.7.68.5±26.9.199,5±70.0、 37.1±15.3μg/m3;NO2夏、秋、冬、春平均濃度分別:42.5±18.0、87.4±20.5、113.8±31.4、44.2±19.0;03濃度的變化主要受溫度、濕度、太陽紫外輻射強度等的影響,O3平均濃度夏季最高,冬季最低,春季高于秋季,夏、秋、冬、春每日8小時滑動平均最大值的均值分別為:169.5±50.0.36.8±20.1、 11.73±13.4.137.6±37.8μg/m3。大氣顆粒物水溶性離子的濃度也有明顯的季節(jié)變化,水溶性離子濃度冬季秋季夏季春季。霾污染的過程中水溶性離子濃度的增長主要是二次離子的增長在起主要作用。重霾天較高的相對濕度,促進了氣溶膠中的液相反應(yīng),二次離子由凝結(jié)模態(tài)向液滴模態(tài)轉(zhuǎn)移的跡象明顯。OC和EC在輕霾天和重霾天有相同的季節(jié)分布特征,OC為冬季最高,春季最低,夏季高于秋季,EC為冬季春季秋季夏季。OC、EC均呈現(xiàn)典型的“雙峰型”分布,但不同季節(jié)出現(xiàn)峰值的粒徑段和峰高有所差異。重金屬元素在大氣顆粒物中的分布總體上呈現(xiàn)與大氣顆粒物濃度季節(jié)變化一致解析出霾污染時期石家莊PM25來源為6類:揚塵(13.4%)、二次源(15.6%)、交通源(21.2%)、工業(yè)源(26.8%)、燃煤(11.0%)以及未解析出來部分(12.1%)。PM2.5中工業(yè)和交通的貢獻最大共計48%,交通源主要為柴油機車的導(dǎo)致。因此石家莊市霾污染的控制,需要優(yōu)先控制工業(yè)源的排放,加快對柴油機車進行改良和油品升級,同時要控制其他污染氣體的排放以減少二次源的貢獻,道路揚塵也同樣不可忽視。
[Abstract]:Beijing Tianjin Hebei, Yangtze River Delta, Pearl River Delta, Guanzhong Plain and Chengdu basin, for atmospheric particles caused by China's most typical areas for serious haze pollution, but also the high emissions of gaseous pollutants in Shijiazhuang haze pollution monitoring research and source analysis, is an important part of the Beijing Tianjin Hebei regional joint prevention and control of air pollution, little research analysis but the report of atmospheric particulates in Shijiazhuang chemical constituents from the water soluble ion size section, combined with chemical composition has just started on the source of atmospheric particulate matter analytical work in the region. The chemical particles of typical Shijiazhuang haze pollution process in cognitive composition characteristics and the concentration level, and further work for source apportionment of atmospheric particulates in 2013, 6-8 months, 10-11 months and 4-5 months in January 2014, the use of inertial impaction type 9 stage sampler (Andersen). The United States ThermoElectron Corporation environmental instruments and quartz micro oscillating microbalance (TE OM) of Shijiazhuang city in summer, autumn, winter and spring during the four season haze particulate air pollution was sampled and analyzed real-time continuous monitoring and size. Using ion chromatography, optical carbon analyzer and inductively coupled plasma mass spectrometry (ICP-MS) of 8 kinds of water soluble inorganic ions in aerosol (Na+ NH4+, K+, Mg2+, Ca2+, Cl-, NO3-, SO42-, EC/OC) and 24 kinds of metal elements were analyzed. And the haze pollution during atmospheric fine particles of source analysis using EPA PMF5.0 model, proposed the Shijiazhuang air pollution control priority emissions. The results are as follows: Shijiazhuang during the sampling period of particle concentration there are distinct seasonal variations. The average concentration of PM2.5 during the period of haze pollution is highest in winter and lowest in summer. In autumn, summer, autumn, winter, spring four season the average concentration of PM2.5 was 73.9 + 33.0272.8 + 142.4170.5 + 75.7,75.4 + 42 g/ M3; seasonal variation of seasonal changes of NO2 and SO2 average concentration and particle induced.SO: summer, autumn, winter and spring, the average concentration respectively: 38.3 + 16.7.68.5 + 26.9.199,5 + 70, 37.1 + 15.3 g/m3 NO2; summer, autumn, winter and spring, the average concentration respectively: 42.5 + 18.0,87.4 + 20.5113.8 + 31.4,44.2 + 19; 03 concentration change is mainly affected by temperature, humidity, solar radiation intensity, the average O3 concentration was highest in summer and lowest in winter, in spring than that in autumn, summer, autumn, winter and spring, mean daily maximum 8 hours moving average respectively: 169.5 + 50.0.36.8 + 20.1, 11.73 + 13.4.137.6 + concentration atmospheric particles of 37.8 g/m3. water soluble ions have obvious seasonal changes, water soluble ion concentration in winter and summer. Autumn spring haze pollution process of water soluble ion concentration increase is mainly the two increase in ion archfunction. Heavy haze days high relative humidity Is promoted in aerosol liquid phase reaction, two ion transfer from condensation mode to the droplet mode of.OC and EC in the obvious signs of light haze days and heavy haze days have the same seasonal distribution characteristics, OC is the highest in winter and lowest in spring and summer than that in autumn winter spring summer autumn season for EC.OC. EC showed the typical "Shuangfeng type" distribution in different seasons, but the peak particle size and peak height difference. Heavy metals present in the overall distribution of atmospheric particles and the concentration of atmospheric particulate consistent seasonal variation analysis of haze pollution in Shijiazhuang during the period of PM25 into 6 categories: dust (13.4%), two the secondary source (15.6%), traffic source (21.2%), industrial sources (26.8%), coal (11%) and not on part (12.1%) with.PM2.5 in the biggest industry and the transportation totaled 48%, traffic is the main source in diesel locomotive. Because of the control of haze pollution in Shijiazhuang City, to We should give priority to control the discharge of industrial sources, accelerate the upgrading of diesel locomotives and upgrade oil products, and control the emissions of other polluting gases to reduce the contribution of the two sources. Road dust can not be ignored either.
【學(xué)位授予單位】:北京化工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:X513
【參考文獻】
相關(guān)期刊論文 前10條
1 史軍;吳蔚;;上海霾氣候數(shù)據(jù)序列重建及其時空特征[J];長江流域資源與環(huán)境;2010年09期
2 吳兌;霾與霧的區(qū)別和灰霾天氣預(yù)警建議[J];廣東氣象;2004年04期
3 昌艷萍;耿超;李春蕾;武瑞蘭;薛柳青;;大氣中PM_(2.5)的現(xiàn)狀分析及新的思考[J];環(huán)境科學(xué)與技術(shù);2012年S1期
4 朱先磊,張遠航,曾立民,王瑋;北京市大氣細顆粒物PM_(2.5)的來源研究[J];環(huán)境科學(xué)研究;2005年05期
5 葉文波;;寧波市大氣可吸入顆粒物PM_(10)和PM_(2.5)的源解析研究[J];環(huán)境污染與防治;2011年09期
6 陶俊;陳剛才;鐘昌琴;;重慶市大氣TSP中水溶性無機離子的化學(xué)特征[J];中國環(huán)境監(jiān)測;2006年06期
7 李杏茹;宋愛利;王英鋒;孫穎;劉子銳;王躍思;;興隆大氣氣溶膠中水溶性無機離子分析[J];環(huán)境科學(xué);2013年01期
8 張小曳;孫俊英;王亞強;李衛(wèi)軍;張薔;王煒罡;權(quán)建農(nóng);曹國良;王繼志;楊元琴;張養(yǎng)梅;;我國霧-霾成因及其治理的思考[J];科學(xué)通報;2013年13期
9 康蘇花;李海峰;楊麗杰;趙鑫;常青;高康寧;李亞卿;靳偉;;石家莊市大氣顆粒物碳組分特征分析[J];科學(xué)技術(shù)與工程;2014年30期
10 游燕;白志鵬;;大氣顆粒物暴露與健康效應(yīng)研究進展[J];生態(tài)毒理學(xué)報;2012年02期
相關(guān)碩士學(xué)位論文 前1條
1 許明君;南京大氣顆粒物中水溶性離子與重金屬元素的理化特性研究[D];南京信息工程大學(xué);2012年
,本文編號:1375629
本文鏈接:http://sikaile.net/kejilunwen/huanjinggongchenglunwen/1375629.html