選礦廢水中殘留黃藥的生化處理研究
本文關(guān)鍵詞:選礦廢水中殘留黃藥的生化處理研究 出處:《昆明理工大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 黃藥 共代謝 氮源 金屬離子 填料 選礦藥劑 EPS
【摘要】:隨著礦業(yè)的發(fā)展,選礦帶來的環(huán)境問題引起了人們的重視,選礦廢水的處理成為環(huán)境污染控制工作中的重要部分。許多物理化學(xué)方法如混凝沉淀法、氧化法、藥劑中合法等被廣泛的應(yīng)用,但許多方法的使用受到成本和技術(shù)的限制無法發(fā)揮其作用。本研究針對選礦廢水中低濃度黃藥和金屬離子、以及起泡劑(皂化物、浮選油)、活化劑(硫化鈉)、抑制劑(硫酸鋅)等藥劑共存的工程實際,采用搖床振蕩培養(yǎng)法,馴化出對黃藥有降解性能的菌群,研究了共代謝基質(zhì)(多糖、二糖、單糖)、氮源成分結(jié)構(gòu)(氯化銨、尿素、酵母膏、硝酸鈉、亞硝酸鈉)、碳氮比、金屬離子(Fe3+、Zn2+、Pb2+)和共存藥劑對菌群降解黃藥的影響。同時利用甘蔗渣、生物可降解樹脂聚丁二酸丁二醇酯(PBS)、活性炭和稻殼作為生物膜填料搭建生物膜反應(yīng)器,研究不同填料組合的生物膜反應(yīng)器對黃藥生化降解的差異,探究生物膜胞外多聚物(Extracellular Polymeric Substances, EPS)含量和組成對黃藥生化降解的影響,推導(dǎo)黃藥生化降解的物質(zhì)變化過程。上述研究結(jié)果表明:(1)黃藥能在自然條件下發(fā)生降解,降解速度先慢后快,但總體降解速度較慢,降解率低;初始pH值越低,越有利于黃藥的自然降解。在經(jīng)馴化的黃藥降解菌存在條件下,黃藥的降解速度明顯加快,降解率顯著提高;黃藥的降解速率與接種微生物的生長繁殖速率相吻合,表明馴化的微生物對黃藥降解有重要作用。在初始pH值為6~10范圍內(nèi),pH值越高,越有利于黃藥降解菌對黃藥的降解,但初始pH不同時,生化降解率差異不大,出水pH偏堿性。由于黃藥降解產(chǎn)物及微生物的調(diào)節(jié)作用等原因,在黃藥降解菌存在的條件下,隨著降解的進行,溶液的pH向中性變化。共代謝基質(zhì)可提高黃藥的生化降解率,因其結(jié)構(gòu)差異,促進作用依次是:淀粉蔗糖葡萄糖,多糖優(yōu)于單糖,淀粉是最適宜的共代謝基質(zhì),促進效果最好。氯化銨和尿素作為氮源時,因含氮量較高,對黃藥降解促進作用最強;酵母膏營養(yǎng)成分較多但含氮量較少,促進效果次之;硝酸鈉和亞硝酸鈉為黃藥降解菌較難利用氮源.黃藥降解效果最差。不同的碳氮比條件下黃藥的降解率存在差異,較高的碳氮比有利于黃藥的降解。(2) 0-20 mg/L的Fe3+有助于黃藥的生物降解,且隨濃度升高促進作用顯著;Zn2+10 mg/L時可促進黃藥的生物降解,高濃度(30-50 mg/L)有一定的抑制作用,4 mg/L的 Pb2+已經(jīng)對黃藥的生物降解表現(xiàn)出抑制作用,隨著Pb2+濃度的升高(8~20 mg/L),抑制作用越明顯。皂化物、浮選油以及高濃度的硫化鈉、硫酸鋅都會對微生物降解黃藥產(chǎn)生不利影響,濃度越高,抑制作用越明顯,但低濃度的硫化鈉和硫酸鋅對黃藥的降解影響不顯著。隨著降解的進行,皂化物和硫酸鋅濃度越高抑制作用越明顯。而在降解的后期,浮選油和硫化鈉的影響減弱。皂化物和浮選油單獨存在時的影響比硫化鈉顯著,且隨著藥劑濃度的增加,黃藥的降解率越低,但硫酸鋅的影響強于浮選油。而藥劑的復(fù)合影響因其存在相互作用,根據(jù)共存藥劑的不同存在差異;除硫酸鋅和皂化物的復(fù)合影響強于單獨存在時的影響外,其余藥劑的復(fù)合作用因為藥劑之間的相互作用使得抑制作用削弱。在不同藥劑存在的條件下,黃藥生化降解過程中紫外掃描圖譜存在差異。皂化物存在時二硫化碳積累量最多,而硫化鈉存在時出現(xiàn)氫硫酸根吸收峰。(3)甘蔗渣、PBS、活性炭和稻殼作為生物膜反應(yīng)器填料能使生物膜穩(wěn)定的生長并發(fā)揮降解作用。和懸浮生長系統(tǒng)相比較,生物膜系統(tǒng)對黃藥的生化降解速度顯著提高;甘蔗渣能提供利用率較好的共代謝碳源并作為載體,較利于黃藥降解菌的生長,生物量較大,EPS含量及PN/PS值較高,有利于生物膜反應(yīng)器對黃藥的降解。生物膜反應(yīng)器填料理化性質(zhì)的差異使得反應(yīng)器中EPS含量、多糖蛋白質(zhì)比例以及黃藥生化降解過程中二硫化碳的量不一樣,但降解過程物質(zhì)種類沒有差異;活性炭和甘蔗渣作為填料的反應(yīng)器中EPS含量最高,蛋白質(zhì)比例也較高,黃藥的生化降解速度最快。
[Abstract]:With the development of mining, environmental problems caused by ore dressing attracted the attention of environmental pollution control work has become an important part of treatment of mineral processing wastewater. Many physical and chemical methods such as coagulation, oxidation, reagent method has been widely applied, but the use of many methods are limited by cost and technique to to play its role. Based on the mineral processing wastewater with low concentration of xanthate and metal ions, and foaming agent (saponification, flotation oil), activating agent (sodium sulfide), inhibitor (zinc sulfate). The coexistence of the engineering practice, by shaking culture method, the domestication of degradation of xanthate, bacteria, research the co metabolism substrate (two sugar, polysaccharide, monosaccharide), nitrogen source (ammonium chloride, urea composition, yeast extract, sodium nitrate, sodium nitrite), carbon nitrogen ratio, metal ions (Fe3+, Zn2+, Pb2+) and the coexistence of agents on bacteria degradation of xanthate. Ring. At the same time using bagasse, biodegradable resin polybutylene succinate (PBS), activated carbon and rice husk as biofilm carrier to build biofilm reactor, different biofilm reactor of different media combinations on xanthate biodegradation, explore the biofilm extracellular polymeric substances (Extracellular, Polymeric Substances, EPS) content and the effect of composition on xanthate biodegradation, material change process is xanthate degraded. The results of the study show that: (1) xanthate degradation occurs under natural conditions, the degradation speed of slow to fast, but the overall degradation rate is slow, the degradation rate is low; the lower initial pH value, the more conducive to the natural degradation of xanthate. In the presence of xanthate degrading bacteria domesticated conditions, the degradation rate of xanthate significantly accelerated the degradation rate increased significantly; the degradation rate and the growth rate of microbe propagation of xanthate is consistent, table The acclimated microorganism plays an important role in the degradation of xanthate. The initial pH value of 6 to 10 range, the higher the pH value, the more favorable to the degradation of xanthate xanthate degrading bacteria, but the initial pH is not at the same time, the biochemical degradation rate is insignificant, the effluent pH is alkaline. Because of xanthate degradation products and microbial regulation the role of reason, in the presence of xanthate degrading conditions, with the degradation, the pH of the solution to the neutral changes. Co metabolism substrate can improve the biodegradation rate of xanthate, because of the different structure, role are: starch and sucrose glucose, polysaccharides than single sugar, starch is the most suitable cometabolic substrates and the best promoting effect. Ammonium chloride and urea as the nitrogen source, because of high content of nitrogen, the xanthate degradation promotes the strongest; yeast extract nutrients but more nitrogen content is less, the promoting effect is secondary; sodium nitrate and sodium nitrite as xanthate degradation bacteria Difficult to use nitrogen source. The degradation of xanthate is the worst. The carbon nitrogen ratio of different degradation rate of xanthate between carbon and nitrogen higher than for xanthate degradation. (2) 0-20 mg/L Fe3+ biodegradation helps xanthate as the concentration increased, and the promoting effect of Zn2+10 mg/L can promote significantly; biological degradation of xanthate, high concentration (30-50 mg/L) had a certain inhibition, 4 mg/L Pb2+ has been on xanthate biodegradation showed inhibitory effect, with the increasing of Pb2+ concentration (8 ~ 20 mg/L), the greater the effect. Saponified oil and sodium sulfide flotation, high concentration of zinc sulfate will have an adverse effect on the microbial degradation of xanthate, the higher the concentration, the inhibition was more obvious, but the effect of degradation of sodium sulfide and zinc sulfate in low concentration of xanthate is not significant. With the degradation of unsaponifiable matter and zinc sulfate, the higher the concentration the more obvious inhibitory effect in degradation. Later, weaken the effect of flotation oil and sodium sulfide. Significant effect saponified and flotation oil exists alone than sodium sulfide, and with the concentration increasing, the degradation rate of xanthate is low, but the effect of zinc sulfate in flotation oil. While the composite effect of chemicals because of their interaction, according to the different differences the coexistence of agents; in addition to the impact of the composite effect of zinc sulfate and saponified stronger than when they are alone outside the compound effect of other chemicals because of the interaction between the agents in different chemical inhibition weakened. Under the conditions of existence, existence of UV spectra of xanthate biodegradation process in the presence of carbon disulfide. Differences in unsaponifiable matter accumulation most, and the presence of hydrogen sulfate sodium sulfide absorption peak at (3) PBS, bagasse, activated carbon and rice husk as biofilm reactor filler can make stable biofilm growth and play down Solution. And suspended growth system, biochemical degradation rate of xanthate biofilm system is significantly improved; the utilization rate of bagasse can provide good carbon sources and as a carrier, is conducive to the growth of xanthate degrading bacteria, large biomass, EPS content and higher PN/PS value, is conducive to the biofilm reactor xanthate degradation. Biofilm reactor filling between the physical and chemical properties of the EPS content in the reactor, carbon disulfide polysaccharide protein ratio and the amount of xanthate biodegradation process is not the same, but there is no difference between the types of material degradation; activated carbon and bagasse as the content of EPS in bioreactor is the highest, higher proportion of protein the biochemical degradation rate of xanthate, the fastest.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:X751
【參考文獻】
相關(guān)期刊論文 前10條
1 徐勁;孫水裕;蔡河山;張萍;;Fenton試劑處理選礦廢水的實驗研究[J];環(huán)境科學(xué)與技術(shù);2005年06期
2 姜峰,潘永亮,梁瑞,陳小光;含硫廢水的處理與研究進展[J];蘭州理工大學(xué)學(xué)報;2004年05期
3 姚傳忠,張克強,季民,閻懷國,雷英春;排硫硫桿菌生物強化處理含硫廢水[J];中國給水排水;2004年02期
4 宋小霞;朱靜;張承屏;丁雪峰;;黃藥的研制、應(yīng)用和水污染處理研究進展[J];貴州化工;2012年03期
5 周茂鐘;劉幽燕;李青云;盧清光;鐘善錦;曹紅軍;;外加營養(yǎng)源對氯氰菊酯降解菌GF31降解特性的影響[J];化工環(huán)保;2009年05期
6 張維;季君暉;趙劍;王小威;許穎;楊冰;王萍麗;;生物質(zhì)基聚丁二酸丁二醇酯(PBS)應(yīng)用研究進展[J];化工新型材料;2010年07期
7 李娟;李浩然;孫春寶;;農(nóng)業(yè)稻殼固定硫酸鹽還原菌處理含鎳廢水[J];過程工程學(xué)報;2010年01期
8 李亞紅;王琦;蔡偉民;;不同pH值條件下Fe~(3+)、Cu~(2+)和Zn~(2+)對廚余垃圾兩相厭氧消化水解酸化過程的影響[J];環(huán)境工程學(xué)報;2007年10期
9 王燦;龔文琪;梅光軍;許念;;羥肟酸類捕收劑2-羥基-3-萘甲羥肟酸的生物降解研究[J];環(huán)境污染與防治;2011年01期
10 葛勇德;硫化沉淀浮選處理電解鈷鎳廢水的實驗研究[J];環(huán)境與開發(fā);1999年02期
,本文編號:1368418
本文鏈接:http://sikaile.net/kejilunwen/huanjinggongchenglunwen/1368418.html