天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 化工論文 >

疊氮化銨以及堿土金屬疊氮化物的高壓研究

發(fā)布時(shí)間:2019-06-04 11:38
【摘要】:本論文采用原位高壓同步輻射X射線衍射、原位高壓拉曼散射光譜和原位高壓紅外吸收光譜等多種高壓實(shí)驗(yàn)技術(shù),利用金剛石對(duì)頂砧準(zhǔn)靜水壓高壓實(shí)驗(yàn)裝置,對(duì)疊氮化銨以及堿土金屬疊氮化物進(jìn)行了高壓結(jié)構(gòu)相變以及結(jié)構(gòu)穩(wěn)定性的研究。通過一系列高壓實(shí)驗(yàn),發(fā)現(xiàn)了多個(gè)高壓新相。并總結(jié)歸納出了堿土金屬疊氮化物高壓下的相變規(guī)律。 1.在常溫條件下,對(duì)疊氮化銨(NH4N3)進(jìn)行了原位高壓同步輻射X射線衍射光譜、原位高壓拉曼光譜以及原位高壓紅外吸收光譜的研究。實(shí)驗(yàn)所達(dá)到的最高壓力分別為50.5GPa、22.4GPa和20GPa。由于疊氮根離子的取向性,正交結(jié)構(gòu)的晶胞在壓力作用下呈現(xiàn)出了壓縮率各項(xiàng)異性的特點(diǎn)。通過三階BM方程擬合,我們得到常壓相的體彈模量為B0=24.5±3.5GPa,B0’=3.4±3.2。當(dāng)壓力增加到2.9GPa時(shí)發(fā)生了一次結(jié)構(gòu)相變。壓制結(jié)構(gòu)相變過程中晶胞參數(shù)a和c趨近相同。所以,我們推斷,這一相變?yōu)橐粋(gè)可逆的從正交結(jié)構(gòu)→四方結(jié)構(gòu)的二級(jí)結(jié)構(gòu)相變。相變后所有振動(dòng)模式在高壓相中保持原有的指認(rèn),表明疊氮化銨在高壓相中始終以疊氮根離子和銨根離子的形式存在,并且它們?nèi)匀灰詺滏I相連接,從N H對(duì)稱伸縮振動(dòng)模式頻率的變化以及波數(shù)位于420cm-1處銨根離子的扭曲振動(dòng)模式相對(duì)強(qiáng)度的變化,我們可以確定氫鍵的鍵能在0~2.9GPa范圍內(nèi)減弱、在2.9~12GPa范圍內(nèi)增強(qiáng)并且在12~20GPa范圍內(nèi)再次發(fā)生減弱。在2.9GPa處的變化是由結(jié)構(gòu)相變所引起的,而在12GPa處的變化是由疊氮根離子的旋轉(zhuǎn)或彎折作用所引起的,并不伴隨結(jié)構(gòu)相變的發(fā)生。 2.在室溫條件下對(duì)疊氮化鈣(Ca(N3)2)進(jìn)行了原位高壓X射線衍射光譜、原位高壓拉曼光譜以及原位高壓遠(yuǎn)紅外和中紅外吸收光譜的研究。實(shí)驗(yàn)所達(dá)到的最高壓力分別為54GPa、19.2GPa、23GPa以及31GPa。整個(gè)實(shí)驗(yàn)壓力范圍內(nèi),沒有發(fā)現(xiàn)結(jié)構(gòu)相變。實(shí)驗(yàn)中得到的疊氮化鈣的零壓體模量以及體模量的壓力導(dǎo)數(shù)分別為B0=41.22±1.14GPa,B0′=5.3±0.04,這一數(shù)值高于所有堿金屬疊氮化物,這是由于金屬與疊氮根之間的鍵合的離子性不同所導(dǎo)致的。為了分析和指認(rèn)所有實(shí)驗(yàn)中觀測(cè)到的振動(dòng)模式,我們利用CESTEP模塊對(duì)常壓下疊氮化鈣的拉曼光譜和紅外光譜進(jìn)行了理論計(jì)算。在振動(dòng)光譜的高壓研究中,我們觀察到某些外模振動(dòng)以及疊氮根的內(nèi)模彎曲振動(dòng)模式(ν2)在0~7GPa范圍內(nèi)發(fā)生軟化,在~7GPa以后又發(fā)生硬化。這一現(xiàn)象與高壓同步輻射XRD衍射中得到的FE fE曲線在7.1GPa處發(fā)生拐點(diǎn)的現(xiàn)象一致。這很有可能是由疊氮根之間發(fā)生的壓縮作用以及疊氮根本身的旋轉(zhuǎn)和彎折作用,交替成為疊氮根在壓力作用下的主導(dǎo)行為所引起的。由于原子間距離和鍵能的變化會(huì)引起電子云的轉(zhuǎn)移,所以這些變化可能是由于疊氮化鈣發(fā)生了電子相變引起的。 3.我們對(duì)疊氮化鍶(Sr(N3)2)進(jìn)行了高壓X-ray同步輻射實(shí)驗(yàn),實(shí)驗(yàn)所達(dá)到的最高壓力為33.5GPa。整個(gè)實(shí)驗(yàn)壓力范圍內(nèi),沒有發(fā)現(xiàn)結(jié)構(gòu)相變。實(shí)驗(yàn)中得到的疊氮化鍶的零壓體模量以及體模量的壓力導(dǎo)數(shù)分別為B0=55.00±0.56GPa,B0′=4,,這一數(shù)值值高于所有已報(bào)道過的金屬疊氮化物,這是由于金屬與疊氮根之間的鍵合的離子性不同所導(dǎo)致的。 4.室溫下進(jìn)行的疊氮化鋇(Ba(N3)2)高壓同步輻射X-ray衍射研究實(shí)驗(yàn)所達(dá)到的最高壓力為28GPa。常壓相結(jié)構(gòu)的晶胞參數(shù)a、b、c在壓力的作用下以不同的速度被壓縮,壓縮率分別為99.47%、99.27%以及99.95%,呈現(xiàn)出了各項(xiàng)異性的特點(diǎn),壓縮程度由大到小的順序?yàn)閎 a c。其中,b軸是最容易被壓縮的,這是由于疊氮化鋇晶體為層狀結(jié)構(gòu),所有的鋇離子和疊氮根離子都位于平行于(010)平面的一個(gè)平面內(nèi),層與層之間較容易被壓縮。a軸的壓縮性最小,這是因?yàn)橄噜彽寞B氮根(I)之間距離最短,排斥力也就最強(qiáng)。疊氮根離子間的排斥力作用以及(100)和(001)平面的滑移作用主導(dǎo)了疊氮化鋇的壓縮性質(zhì)。當(dāng)壓力增加到2.6GPa以后,高壓同步輻射X-ray衍射圖譜中發(fā)生了一些變化,出現(xiàn)了一些新峰,表明開始發(fā)生了一次結(jié)構(gòu)相變。我們將它定義為一次等結(jié)構(gòu)相變,同I相一樣,II相仍為單斜結(jié)構(gòu),空間群仍為P21/m。當(dāng)壓力繼續(xù)增加到11.8GPa,同步輻射衍射圖譜中又出現(xiàn)了一些新的衍射峰,表明又發(fā)生了一次結(jié)構(gòu)相變,此新相的結(jié)構(gòu)保持到了28.0GPa。并且壓力下這一系列結(jié)構(gòu)的變化是可逆的。
[Abstract]:in that pap, high-pressure experimental technology such as in-situ high-voltage synchronous radiation X-ray diffraction, in-situ high-pressure Raman scattering spectrum and in-situ high-pressure infrared absorption spectrum are adopted, The phase transition of the high-voltage structure and the structural stability of the azido-and alkaline-earth metal azide are studied. A series of high-pressure new phases were found through a series of high-pressure experiments. The phase transition in high pressure of alkaline-earth metal azide is summarized. 1. In normal temperature, the in-situ high-voltage synchrotron radiation X-ray diffraction, in-situ high-pressure Raman spectrum and in-situ high-pressure infrared absorption spectrum were carried out for the in-situ high-pressure synchrotron radiation. The highest pressures reached in the experiment were 50.5 GPa, 22.4 GPa and 20 GP, respectively. A. Because of the orientation of the azido ion, the unit cell of the orthogonal structure exhibits the opposite of the compression rate under the action of pressure. Point. By fitting the third-order BM equation, the bulk elastic modulus of the normal pressure phase is B0 = 24.5-3.5 GPa, and B0 '= 3.4-3. 2. A structural phase occurs when the pressure is increased to 2.9 GPa the crystal cell parameters a and c approach phase in the process of phase change of the pressing structure In the same way, we conclude that this phase becomes a reversible secondary structural phase from an orthogonal structure to a tetragonal structure. All vibration modes after phase change maintain the original designation in the high pressure phase, indicating that the azido is always present in the form of an azido ion and a radical ion in the high-pressure phase, and they are still connected in hydrogen bonds It can be determined that the bond energy of the hydrogen bond can be reduced in the range of 0 to 2.9 GPa and the decrease of the wave number at 420 cm-1 at 420 cm-1, which is increased in the range of 2.9 to 12 GPa and is reduced again in the range of 12 to 20 GPa. Weak. The change at 2.9 GPa is caused by the phase transition of the structure, while the change at 12 GPa is caused by the rotation or bending of the azide ions and does not accompany the formation of the structural phase change 2. In-situ high-pressure X-ray diffraction, in-situ high-pressure Raman spectroscopy and in-situ high-pressure far-infrared and mid-infrared absorption spectra for calcium azide (Ca (N3)2) at room temperature The highest pressures reached in the experiment were 54 GPa, 19.2 GPa,23 GPa and 31, respectively. GPa. No knots were found throughout the experimental pressure range. The zero-pressure body modulus of the azido-calcium obtained in the experiment and the pressure derivative of the bulk modulus are B0 = 41.22-1.14 GPa, and the B0-type = 5.3-0.04, which is higher than all the alkali metal azide, which is due to the different ionic nature of the bonding between the metal and the azido. In order to analyze and identify the vibration modes observed in all the experiments, the Raman spectrum and the infrared spectrum of the azido calcium under normal pressure were studied by means of the CESTEP module. In the high-pressure study of the vibration spectrum, we observed that some of the outer-mold vibration and the inner-mold bending vibration mode of the azido-radical were softened in the range of 0-7 GPa, and after ~ 7 GPa The phenomenon that the FE-E curve obtained in the XRD diffraction of high-pressure synchrotron radiation has an inflection point at 7.1 GPa. This is likely to be the compression action that occurs between the azido and the rotation and bending of the azido body, alternating into the dominant behavior of the azido under pressure. It is caused by the change of the interatomic distance and the key energy, which can lead to the transfer of the electron cloud, so that these changes may be due to the electronic phase change of the azido calcium. Induced.3. We conducted a high-pressure X-ray synchrotron radiation experiment on the azido (Sr (N3)2). The maximum pressure reached by the experiment was 33. .5 GPa. In the entire experimental pressure range, no hair is produced. The zero-pressure body modulus and the pressure derivative of the bulk modulus obtained in the experiment are B0 = 55.00, 0.56 GPa, and B0 = 4, and this value is higher than all reported metal azide, since the ionic nature of the bonding between the metal and the azido is not The highest pressure reached by the high-pressure synchrotron radiation X-ray diffraction study in the high-pressure synchrotron radiation of Ba (N3)2) carried out at room temperature And the compression ratio is 99.47%, 99.27% and 99.95%, respectively. It is most easily compressed, since the azido crystal is a layered structure, all of the ionization ions and the azido ions are in a plane parallel to the (010) plane, and the layer and the layer the compressibility of the a-axis is minimal because the distance between adjacent azido (i) is the shortest, The repulsive force is also the strongest. The repulsive force between the azide ions and the sliding action of the (100) and (001) planes dominate the azido. When the pressure is increased to 2.6 GPa, some changes have taken place in the X-ray diffraction pattern of the high-pressure synchronous radiation, and some new peaks appear, indicating the beginning of the occurrence We define it as an isostructural phase change, which is the same as the I phase, and the phase II is still a monoclinic structure, and the space group It is still P21/ m. When the pressure is increased to 11.8 GPa, some new diffraction peaks appear in the synchrotron radiation diffraction pattern. 28.0 gpa. and the series of structures under pressure
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TQ126.2

【參考文獻(xiàn)】

相關(guān)期刊論文 前8條

1 賈茹;崔啟良;李芳菲;李敏;何志;崔田;周強(qiáng);洪時(shí)明;鄒廣田;;一套高溫高壓原位拉曼散射、布里淵散射測(cè)量系統(tǒng)[J];光散射學(xué)報(bào);2008年03期

2 張德雄;張衍;王偉平;薛金星;;高能量密度材料(HEDM)研究開發(fā)現(xiàn)狀及展望[J];固體火箭技術(shù);2005年04期

3 周世光,吳文健;高能量密度材料[J];化工時(shí)刊;1997年12期

4 黃明;李洪珍;李金山;;高氮含能化合物的合成及反應(yīng)性[J];含能材料;2006年06期

5 陽世清;徐松林;黃亨健;張煒;張興高;;高氮化合物及其含能材料[J];化學(xué)進(jìn)展;2008年04期

6 肖鶴鳴;王遵堯;姚劍敏;;芳香族硝基炸藥感度和安定性的量子化學(xué)研究——Ⅰ.苯胺類硝基衍生物[J];化學(xué)學(xué)報(bào);1985年01期

7 肖鶴鳴,李永富;金屬疊氮化物的能帶和電子結(jié)構(gòu)——感度和導(dǎo)電性[J];中國(guó)科學(xué)(B輯 化學(xué) 生命科學(xué) 地學(xué));1995年01期

8 吳自玉;同步輻射——世紀(jì)新光源[J];科學(xué)中國(guó)人;2002年08期

相關(guān)博士學(xué)位論文 前1條

1 馬春麗;幾種典型直鏈和環(huán)狀有機(jī)物的高壓物性研究[D];吉林大學(xué);2013年



本文編號(hào):2492698

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huagong/2492698.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶3e600***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com