磁感應(yīng)游離磨粒線鋸切割中磁系設(shè)計研究
[Abstract]:Magnetic induction free abrasive wire saw technology by adding an auxiliary uniform magnetic field outside the ferromagnetic saw wire to magnetize the saw wire and produce a high gradient magnetic field, the magnetic abrasive particles around the saw wire are affected by magnetic force, thus increasing the number of abrasive particles entering the cutting area. Thus, the cutting process of wire saw is improved. Magnetic force is an important force affecting the movement of magnetic abrasive particles around saw wire. Its size and direction are mainly affected by the auxiliary uniform magnetic field, so the magnetic system used to produce uniform magnetic field plays a very important role in improving the cutting process of wire saw. The magnetic system used to produce uniform magnetic field should not only provide high magnetic field strength but also meet the practical requirements in cutting. In this paper, the principle of magnetic circuit design is introduced into the magnetic system design of magnetic induction free abrasive wire saw cutting technology. Through finite element simulation and experiment, the magnetic system structure which can be assembled with wire saw cutting machine and can be adjusted with air gap is designed. The experiments of cutting contrast are carried out with the designed magnetic system. (1) the magnetic field intensity is the main factor that determines the magnetic gradient of wire and the magnetic force of magnetic abrasive particles. In order to further analyze the effect of magnetic field intensity on cutting performance, The primary requirement of magnetic system design is to improve the magnetic field intensity. (2) the magnetic circuit design principle is introduced into the magnetic system design. Through finite element simulation and experiment, the magnetic system structure applied in the magnetic induction free abrasive wire saw cutting technology is designed. The corresponding curves between the air gap distance and the magnetic field intensity of the magnetic system are established. When the air gap distance of the magnetic system changes at 50 ~ 90 mm, the adjustable magnetic field intensity is 4.78 脳 10 ~ 4 ~ (4) N ~ (14.33) 脳 10 ~ (4) A / m ~ (-1). The gradient magnetic field of the saw wire placed in the magnetic field of the magnetic system is analyzed by using the three-dimensional finite element simulation method, and the experimental results are verified. The saw wire placed in the magnetic field of magnetic system has obvious effect of zonal adsorption on the magnetic abrasive particles around. (3) the experimental platform of magnetic induction wire saw cutting is built and the cutting contrast experiment is carried out by using the magnetic system designed. The workpiece cutting at 10.35 脳 10 ~ 4 A / m magnetic field intensity has the optimum cutting slot width, flanging width, cutting efficiency, and when the magnetic field intensity is 0 ~ 10.35 脳 10 ~ 4 A / m, the cutting seam width, flanging width and cutting efficiency will be improved gradually with the increase of magnetic field intensity. When the magnetic field intensity is increased to 14.33 脳 10 ~ 4 A / m, the cutting efficiency decreases with the increase of the magnetic field intensity, the width of cutting slit and the width of caving edge. The magnetic field intensity applied to the magnetic induction free abrasive wire saw is not as large as possible, and its range is: 7.16 脳 10 ~ 4 ~ (4) ~ 14.33 脳 10 ~ (4) A / m ~ (-1).
【學(xué)位授予單位】:浙江工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TQ127.2;TG717
【參考文獻】
相關(guān)期刊論文 前10條
1 姚春燕;唐晨;裘騰威;張威;彭偉;;線鋸切割中鋸絲的高梯度磁場數(shù)值和理論分析[J];現(xiàn)代制造工程;2016年02期
2 彭偉;王金生;姚春燕;;亞固結(jié)線鋸切割實驗研究[J];中國機械工程;2013年09期
3 周濤;陸曉東;張明;李媛;劉愛民;倫淑嫻;;晶硅太陽能電池發(fā)展?fàn)顩r及趨勢[J];激光與光電子學(xué)進展;2013年03期
4 江國中;蔣云龍;王學(xué)軍;;單多晶太陽能硅片切割線痕問題研究[J];電子工業(yè)專用設(shè)備;2013年01期
5 王金生;姚春燕;彭偉;金鑫;陳世杰;;游離磨料多股線線鋸切割實驗研究[J];中國工程科學(xué);2012年11期
6 李言;王肖燁;李淑娟;鄭建明;袁啟龍;;超聲輔助線鋸切割SiC單晶實驗研究[J];人工晶體學(xué)報;2012年04期
7 凌捷;;后金融危機時代中國光伏產(chǎn)業(yè)發(fā)展走向及戰(zhàn)略選擇——基于美國對華光伏“雙反”調(diào)查的思考[J];改革與戰(zhàn)略;2012年06期
8 胡文艷;;釹鐵硼永磁材料的性能及研究進展[J];現(xiàn)代電子技術(shù);2012年02期
9 蔡二輝;湯斌兵;周劍;辛超;周浪;;晶體Si片切割表面損傷及其對電學(xué)性能的影響[J];半導(dǎo)體技術(shù);2011年08期
10 王發(fā)輝;孫付偉;;高梯度磁場中磁性微粒的動力學(xué)模型研究[J];礦山機械;2010年03期
相關(guān)博士學(xué)位論文 前2條
1 陳勇;Halbach陣列機器人磁吸附單元理論分析與實驗研究[D];南京理工大學(xué);2013年
2 程志華;多絲切割機理及其控制方法的研究[D];上海大學(xué);2008年
相關(guān)碩士學(xué)位論文 前7條
1 劉其;單晶SiC集群磁流變研磨加工工藝實驗研究[D];廣東工業(yè)大學(xué);2014年
2 周子鵬;弱磁場對食品凍結(jié)過程影響的研究[D];山東大學(xué);2013年
3 張玉棟;微細(xì)粒貧赤鐵礦強磁選中聚磁介質(zhì)優(yōu)化研究[D];河北聯(lián)合大學(xué);2013年
4 庚小迪;輔以磁場的水分散劑工作液電火花小孔加工工藝研究[D];太原理工大學(xué);2011年
5 黃雄林;周期式水平磁系高梯度磁選機的磁路計算和聚磁介質(zhì)研究[D];中南大學(xué);2010年
6 王燕青;垂直磁場輔助的電火花加工理論與仿真分析[D];太原理工大學(xué);2009年
7 喻強;水下磁吸附式輪履焊接機器人原理樣機研究[D];南昌大學(xué);2007年
,本文編號:2241302
本文鏈接:http://sikaile.net/kejilunwen/huagong/2241302.html